Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Geophys Res Biogeosci ; 126(4): 1-21, 2021 Mar.
Article in English | MEDLINE | ID: mdl-37089664

ABSTRACT

Published reports suggest efforts designed to prevent the occurrence of harmful algal blooms and hypoxia by reducing non-point and point source phosphorus (P) pollution are not delivering water quality improvements in many areas. Part of the uncertainty in evaluating watershed responses to management practices is the lack of standardized estimates of phosphorus inputs and outputs. To assess P trends across the conterminous United States, we compiled an inventory using publicly available datasets of agricultural P fluxes, atmospheric P deposition, human P demand and waste, and point source discharges for 2002, 2007, and 2012 at the scale of the 8-digit Hydrologic Unit Code subbasin (~1,800 km2). Estimates of agricultural legacy P surplus accumulated from 1945 to 2001 were also developed. Fertilizer and manure inputs were found to exceed crop removal rates by up to 50% in many agricultural regions. This excess in inputs has led to the continued accumulation of legacy P in agricultural lands. Atmospheric P deposition increased throughout the Rockies, potentially contributing to reported increases in surface water P concentrations in undisturbed watersheds. In some urban areas, P fluxes associated with human waste and non-farm fertilizer use has declined despite population growth, likely due, in part, to various sales bans on P-containing detergents and fertilizers. Although regions and individual subbasins have different contemporary and legacy P sources, a standardized method of accounting for large and small fluxes and ready to use inventory numbers provide essential infromation to coordinate targeted interventions to reduce P concentrations in the nation's waters.

2.
Freshw Sci ; 39(4): 1-18, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33747635

ABSTRACT

Secondary salinization, the increase of anthropogenically-derived salts in freshwaters, threatens freshwater biota and ecosystems, drinking water supplies, and infrastructure. The various anthropogenic sources of salts and their locations in a watershed may result in secondary salinization of river and stream networks through multiple inputs. We developed a watershed predictive assessment to investigate the degree to which topology, land-cover, and land-use covariates affect stream specific conductivity (SC), a measure of salinity. We used spatial stream network models to predict SC throughout an Appalachian stream network in a watershed affected by surface coal mining. During high-discharge conditions, 8 to 44% of stream km in the watershed exceeded the SC benchmark of 300 µS/cm, which is meant to be protective of aquatic life in the Central Appalachian ecoregion. During low-discharge conditions, 96 to 100% of stream km exceeded the benchmark. The 2 different discharge conditions altered the spatial dependency of SC among the stream monitoring sites. During most low discharges, SC was a function of upstream-to-downstream network distances, or flow-connected distances, among the sites. Flow-connected distances are indicative of upstream dependencies affecting stream SC. During high discharge, SC was related to both flow-connected distances and flow-unconnected distances (i.e., distances between sites on different branches of the network). Flow-unconnected distances are indicative of processes on adjacent branches and their catchments affecting stream SC. With sites distributed from headwaters to the watershed outlet, the extent of impacts from secondary salinization could be better spatially predicted and assessed with spatial stream network models than with models assuming spatial independence. Importantly, the assessment also recognized the multi-scale spatial relationships that can occur between the landscape and stream network.

3.
J Am Water Resour Assoc ; 55(1): 247-258, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-33354106

ABSTRACT

Spatial patterns in major dissolved solute concentrations were examined to better understand impact of surface coal mining in headwaters on downstream water chemistry. Sixty sites were sampled seasonally from 2012 to 2014 in an eastern Kentucky watershed. Watershed areas (WA) ranged from 1.6 to 400.5 km2 and were mostly forested (58%-95%), but some drained as much as 31% surface mining. Measures of total dissolved solutes and most component ions were positively correlated with mining. Analytes showed strong convergent spatial patterns with high variability in headwaters (<15 km2 WA) that stabilized downstream (WA > 75 km2), indicating hydrologic mixing primarily controls downstream values. Mean headwater solute concentrations were a good predictor of downstream values, with % differences ranging from 0.55% (Na+) to 28.78% (Mg2+). In a mined scenario where all headwaters had impacts, downstream solute concentrations roughly doubled. Alternatively, if mining impacts to headwaters were minimized, downstream solute concentrations better approximated the 300 µS/cm conductivity criterion deemed protective of aquatic life. Temporal variability also had convergent spatial patterns and mined streams were less variable due to unnaturally stable hydrology. The highly conserved nature of dissolved solutes from mining activities and lack of viable treatment options suggest forested, unmined watersheds would provide dilution that would be protective of downstream aquatic life.

SELECTION OF CITATIONS
SEARCH DETAIL
...