Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 14093, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890418

ABSTRACT

The use of increasingly advanced energetic materials (EMs) in various branches of industry and military sectors increases the appropriate requirements for EMs, including: their durability, safety of use, chemical and high-energetic properties. Additionally, the impact of the products of the explosion of EMs on the natural environment is also crucial. Therefore, on-site mixture (OSM) energetic materials containing concentrated hydrogen peroxide (OSM-type energetic materials) are becoming increasingly popular. This is an extremely interesting group of materials that contains in excess of 50 wt.% hydrogen peroxide (HP) and not containing toxic compounds, and therefore is environmentally friendly. The main objective of the study was to investigate the various compositions of OSM-type energetic materials in terms of the evolution over time of their energetic properties (including the "raw" energetic material strength and the ability to sustain the propagation of a detonation wave) and the volume of the post-detonation gases. The obtained results show that the decomposition of hydrogen peroxide strongly affects the detonation parameters of OSM-type energetic material and the decomposition time of HP. In addition, it has been proven that rate of decomposition of HP significantly affects the detonation parameters of OSM-type energetic materials. It was also found that the concentration of NO x is low and decreases dramatically with the decomposition of hydrogen peroxide, but at the same time the concentration of carbon oxides increases.

2.
Molecules ; 28(16)2023 Aug 19.
Article in English | MEDLINE | ID: mdl-37630395

ABSTRACT

The aims of this study were to investigate the potential of using barium peroxide as an environmentally friendly oxidising agent, to evaluate the composition of the combustion products of the developed pyrotechnic delay compositions (PDCs) and to provide information about the impact of the utilised metallic fuel (Mg, Al, Fe or Cu) on the properties of those PDCs. The PDCs exhibited acceptable friction and impact sensitivity values. This allowed conducting further experiments, e.g., determining the linear combustion velocity of the PDCs as a function of oxygen balance (OB). Based on the composition of the post-combustion residues, determined by Raman spectroscopy and SEM-EDS, an initial mechanism for the combustion of the developed PDCs was proposed.

3.
Molecules ; 28(15)2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37570606

ABSTRACT

Ammonium nitrate-fuel oil (ANFO) explosives are inexpensive and readily produced, but are highly prone to misfires, with the remaining explosive being a significant risk and environmental contaminant. In this work, studies on various additives, such as selected perchlorates and inorganic peroxides, which are intended to lower the susceptibility of ANFO to misfires by increasing its sensitivity to shock, have been conducted. These studies showed the viability of using these additives in ANFO, allowing for conducting shock wave sensitivity tests for bulk charges in the future. We investigated the effects of introducing these additives into ANFO (on its sensitivity), as well as thermal and energetic properties. We observed minor increases in friction and impact sensitivity, as well as a moderate reduction in the decomposition temperature of the additive-supplemented ANFO in comparison to unmodified ANFO.

4.
Molecules ; 28(15)2023 Jul 29.
Article in English | MEDLINE | ID: mdl-37570712

ABSTRACT

This work aims to investigate the combustion mechanism for a pyrotechnic delay composition (PDC), consisting of zinc powder as a fuel and KMnO4 as an oxidising agent. For this purpose, the compositions were thermally conditioned at several set temperatures, chosen based on our previous work. Tests were also performed for post-combustion residues obtained via combustion of the PDCs in a manometric bomb. The samples were examined by scanning electron microscopy (SEM), Raman spectroscopy and X-ray diffractometry (XRD). Furthermore, the obtained results were correlated with previous studies by the authors and compared with data available in the literature. On the basis of tests carried out for thermally conditioned samples, a combustion mechanism was determined for Zn/KMnO4 as a function of temperature. The results show that the combustion process dynamics are independent of equilibrium ratio and limited mainly by diffusion of liquid fuel into the solid oxidising agent. Moreover, it has been revealed that Raman spectroscopy can be effectively used to determine combustion mechanisms for pyrotechnic compositions.

5.
Materials (Basel) ; 15(18)2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36143717

ABSTRACT

This article reports an investigation of the combustion of a binary pyrotechnic delay composition (PDC), consisting of zinc powder as fuel and KMnO4 as an oxidising agent, with zinc content ranging from 35 to 70 wt. %. The linear burning rate for delay compositions in the form of pyrotechnic fuses was investigated. Compositions with zinc content between 50 and 70 wt. % yielded burn rates in the range of 13.30-28.05 mm/s. The delay compositions were also tested for their sensitivity to friction and impact, where the compositions showed impact sensitivity in the range from 7.5 to 50 J and were insensitive to friction. Tests in a pressure bomb were carried out to determine the maximum overpressure and pressurisation rate. The thermal properties of the composition were evaluated by thermogravimetric analysis (DTA/TG). The morphology of the combustion products was studied by SEM technique, EDS analyses were used to investigate the element distribution of the post-combustion residues, providing an insight into the phenomena taking place during the combustion of the delay compositions.

6.
Materials (Basel) ; 15(9)2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35591548

ABSTRACT

One of the groups of pyrotechnic compositions is thermite compositions, so-called thermites, which consist of an oxidant, usually in the form of a metal oxide or salt, and a free metal, which is the fuel. A characteristic feature of termite combustion reactions, apart from their extremely high exothermicity, is that they proceed, for the most part, in liquid and solid phases. Nanothermites are compositions, which include at least one component whose particles size is on the order of nanometers. The properties of nanothermites, such as high linear burning velocities, high reaction heats, high sensitivity to stimuli, low ignition temperature, ability to create hybrid compositions with other high-energy materials allow for a wide range of applications. Among the applications of nanothermites, one should mention igniters, detonators, microdetonators, micromotors, detectors, elements of detonation chain or elements allowing self-destruction of systems (e.g., microchips). The aim of this work is to discuss the preparation methods, research methods, direction of the future development, eventual challenges or problems and to highlight the applications and emerging novel avenues of use of these compositions.

7.
Materials (Basel) ; 14(19)2021 Oct 05.
Article in English | MEDLINE | ID: mdl-34640215

ABSTRACT

The current focus on both environmental and general safety is an important issue in the field of explosives. As such, environmentally-friendly explosives, based on hydrogen peroxide (HTP) as an oxidising agent, are of significant interest. These explosives can be designed to undergo self-deactivation, denying access to them by any unlawful third parties that may attempt scavenging blasting sites for any residual energetic materials. Such deactivation also improves blasting safety, as, after a set time, misfired charges no longer pose any explosive threat. In this work, we have designed HTP-based explosive formulations that undergo deactivation after approximately 12 h. To this effect, Al powders were used both as fuels and HTP decomposition promoters. The shock wave parameters and ability to perform mechanical work of the proposed explosive formulations are comparable to those of dynamites and bulk emulsion explosives, and the details of the changes of these parameters over time are also reported.

SELECTION OF CITATIONS
SEARCH DETAIL
...