Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 122023 03 13.
Article in English | MEDLINE | ID: mdl-36913486

ABSTRACT

Apical extracellular matrices (aECMs) form a physical barrier to the environment. In Caenorhabditis elegans, the epidermal aECM, the cuticle, is composed mainly of different types of collagen, associated in circumferential ridges separated by furrows. Here, we show that in mutants lacking furrows, the normal intimate connection between the epidermis and the cuticle is lost, specifically at the lateral epidermis, where, in contrast to the dorsal and ventral epidermis, there are no hemidesmosomes. At the ultrastructural level, there is a profound alteration of structures that we term 'meisosomes,' in reference to eisosomes in yeast. We show that meisosomes are composed of stacked parallel folds of the epidermal plasma membrane, alternately filled with cuticle. We propose that just as hemidesmosomes connect the dorsal and ventral epidermis, above the muscles, to the cuticle, meisosomes connect the lateral epidermis to it. Moreover, furrow mutants present marked modifications of the biomechanical properties of their skin and exhibit a constitutive damage response in the epidermis. As meisosomes co-localise to macrodomains enriched in phosphatidylinositol (4,5) bisphosphate, they could conceivably act, like eisosomes, as signalling platforms, to relay tensile information from the aECM to the underlying epidermis, as part of an integrated stress response to damage.


Subject(s)
Caenorhabditis elegans Proteins , Animals , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Epidermis/metabolism , Epidermal Cells/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Extracellular Matrix/metabolism
2.
Proc Natl Acad Sci U S A ; 119(26): e2118755119, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35749364

ABSTRACT

Retromer is a heteropentameric complex that plays a specialized role in endosomal protein sorting and trafficking. Here, we report a reduction in the retromer proteins-vacuolar protein sorting 35 (VPS35), VPS26A, and VPS29-in patients with amyotrophic lateral sclerosis (ALS) and in the ALS model provided by transgenic (Tg) mice expressing the mutant superoxide dismutase-1 G93A. These changes are accompanied by a reduction of levels of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor subunit GluA1, a proxy of retromer function, in spinal cords from Tg SOD1G93A mice. Correction of the retromer deficit by a viral vector expressing VPS35 exacerbates the paralytic phenotype in Tg SOD1G93A mice. Conversely, lowering Vps35 levels in Tg SOD1G93A mice ameliorates the disease phenotype. In light of these findings, we propose that mild alterations in retromer inversely modulate neurodegeneration propensity in ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Vesicular Transport Proteins , Amyotrophic Lateral Sclerosis/metabolism , Animals , Disease Models, Animal , Humans , Mice , Mice, Transgenic , Spinal Cord/metabolism , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism
3.
Nat Commun ; 11(1): 5579, 2020 11 04.
Article in English | MEDLINE | ID: mdl-33149111

ABSTRACT

Cell-to-cell communications are critical determinants of pathophysiological phenotypes, but methodologies for their systematic elucidation are lacking. Herein, we propose an approach for the Systematic Elucidation and Assessment of Regulatory Cell-to-cell Interaction Networks (SEARCHIN) to identify ligand-mediated interactions between distinct cellular compartments. To test this approach, we selected a model of amyotrophic lateral sclerosis (ALS), in which astrocytes expressing mutant superoxide dismutase-1 (mutSOD1) kill wild-type motor neurons (MNs) by an unknown mechanism. Our integrative analysis that combines proteomics and regulatory network analysis infers the interaction between astrocyte-released amyloid precursor protein (APP) and death receptor-6 (DR6) on MNs as the top predicted ligand-receptor pair. The inferred deleterious role of APP and DR6 is confirmed in vitro in models of ALS. Moreover, the DR6 knockdown in MNs of transgenic mutSOD1 mice attenuates the ALS-like phenotype. Our results support the usefulness of integrative, systems biology approach to gain insights into complex neurobiological disease processes as in ALS and posit that the proposed methodology is not restricted to this biological context and could be used in a variety of other non-cell-autonomous communication mechanisms.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Astrocytes/metabolism , Cell Communication/physiology , Cell Death/physiology , Motor Neurons/metabolism , Superoxide Dismutase-1/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Amyotrophic Lateral Sclerosis/enzymology , Amyotrophic Lateral Sclerosis/genetics , Animals , Cells, Cultured , Computational Biology , Disease Models, Animal , Gene Knockdown Techniques , Gene Silencing , Humans , Ligands , Matrix Metalloproteinase 9/metabolism , Mice , Mice, Transgenic , Proteomics , RNA, Small Interfering , Receptors, Tumor Necrosis Factor/genetics , Receptors, Tumor Necrosis Factor/metabolism , Superoxide Dismutase-1/genetics
4.
eNeuro ; 6(1)2019.
Article in English | MEDLINE | ID: mdl-30815534

ABSTRACT

Increasing evidence suggests that necroptosis, a form of programmed cell death (PCD), contributes to neurodegeneration in several disorders, including ALS. Supporting this view, investigations in both in vitro and in vivo models of ALS have implicated key molecular determinants of necroptosis in the death of spinal motor neurons (MNs). Consistent with a pathogenic role of necroptosis in ALS, we showed increased mRNA levels for the three main necroptosis effectors Ripk1, Ripk3, and Mlkl in the spinal cord of mutant superoxide dismutase-1 (SOD1G93A) transgenic mice (Tg), an established model of ALS. In addition, protein levels of receptor-interacting protein kinase 1 (RIPK1; but not of RIPK3, MLKL or activated MLKL) were elevated in spinal cord extracts from these Tg SOD1G93A mice. In postmortem motor cortex samples from sporadic and familial ALS patients, no change in protein levels of RIPK1 were detected. Silencing of Ripk3 in cultured MNs protected them from toxicity associated with SOD1G93A astrocytes. However, constitutive deletion of Ripk3 in Tg SOD1G93A mice failed to provide behavioral or neuropathological improvement, demonstrating no similar benefit of Ripk3 silencing in vivo. Lastly, we detected no genotype-specific myelin decompaction, proposed to be a proxy of necroptosis in ALS, in either Tg SOD1G93A or Optineurin knock-out mice, another ALS mouse model. These findings argue against a role for RIPK3 in Tg SOD1G93A-induced neurodegeneration and call for further preclinical investigations to determine if necroptosis plays a critical role in the pathogenesis of ALS.


Subject(s)
Cell Death/physiology , Motor Neurons/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/deficiency , Adult , Aged , Aged, 80 and over , Amyotrophic Lateral Sclerosis/metabolism , Animals , Astrocytes/metabolism , Astrocytes/pathology , Cell Cycle Proteins , Cell Line , Coculture Techniques , Eye Proteins/genetics , Eye Proteins/metabolism , Female , Humans , Male , Membrane Transport Proteins , Mice, Inbred C57BL , Mice, Transgenic , Middle Aged , Motor Cortex/metabolism , Motor Cortex/pathology , Motor Neurons/pathology , Primary Cell Culture , Protein Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Spinal Cord/metabolism , Spinal Cord/pathology , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism
5.
Genetics ; 197(4): 1285-302, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24931405

ABSTRACT

The Wnt pathway is a conserved signal transduction pathway that contributes to normal development and adult homeostasis, but is also misregulated in human diseases such as cancer. The tumor suppressor adenomatous polyposis coli (APC) is an essential negative regulator of Wnt signaling inactivated in >80% of colorectal cancers. APC participates in a multiprotein "destruction complex" that targets the proto-oncogene ß-catenin for ubiquitin-mediated proteolysis; however, the mechanistic role of APC in the destruction complex remains unknown. Several models of APC function have recently been proposed, many of which have emphasized the importance of phosphorylation of high-affinity ß-catenin-binding sites [20-amino-acid repeats (20Rs)] on APC. Here we test these models by generating a Drosophila APC2 mutant lacking all ß-catenin-binding 20Rs and performing functional studies in human colon cancer cell lines and Drosophila embryos. Our results are inconsistent with current models, as we find that ß-catenin binding to the 20Rs of APC is not required for destruction complex activity. In addition, we generate an APC2 mutant lacking all ß-catenin-binding sites (including the 15Rs) and find that a direct ß-catenin/APC interaction is also not essential for ß-catenin destruction, although it increases destruction complex efficiency in certain developmental contexts. Overall, our findings support a model whereby ß-catenin-binding sites on APC do not provide a critical mechanistic function per se, but rather dock ß-catenin in the destruction complex to increase the efficiency of ß-catenin destruction. Furthermore, in Drosophila embryos expressing some APC2 mutant transgenes we observe a separation of ß-catenin destruction and Wg/Wnt signaling outputs and suggest that cytoplasmic retention of ß-catenin likely accounts for this difference.


Subject(s)
Adenomatous Polyposis Coli/metabolism , Drosophila Proteins/metabolism , Drosophila/genetics , Tumor Suppressor Proteins/metabolism , Wnt Signaling Pathway , beta Catenin/metabolism , Adenomatous Polyposis Coli/genetics , Animals , Cell Line, Tumor , Drosophila/embryology , Drosophila Proteins/genetics , Female , Gene Deletion , Gene Expression Regulation, Neoplastic , Humans , Male , Models, Molecular , Phosphorylation , Proto-Oncogene Mas , Tumor Suppressor Proteins/genetics , beta Catenin/genetics
6.
Neuron ; 81(5): 1001-1008, 2014 Mar 05.
Article in English | MEDLINE | ID: mdl-24508385

ABSTRACT

Most cases of neurodegenerative diseases are sporadic, hindering the use of genetic mouse models to analyze disease mechanisms. Focusing on the motor neuron (MN) disease amyotrophic lateral sclerosis (ALS), we therefore devised a fully humanized coculture model composed of human adult primary sporadic ALS (sALS) astrocytes and human embryonic stem-cell-derived MNs. The model reproduces the cardinal features of human ALS: sALS astrocytes, but not those from control patients, trigger selective death of MNs. The mechanisms underlying this non-cell-autonomous toxicity were investigated in both astrocytes and MNs. Although causal in familial ALS (fALS), SOD1 does not contribute to the toxicity of sALS astrocytes. Death of MNs triggered by either sALS or fALS astrocytes occurs through necroptosis, a form of programmed necrosis involving receptor-interacting protein 1 and the mixed lineage kinase domain-like protein. The necroptotic pathway therefore constitutes a potential therapeutic target for this incurable disease.


Subject(s)
Amyotrophic Lateral Sclerosis/pathology , Astrocytes/cytology , Cell Communication/physiology , Cell Death/physiology , Motor Neurons/cytology , Adult , Amyotrophic Lateral Sclerosis/genetics , Animals , Coculture Techniques , DNA-Binding Proteins/physiology , Embryonic Stem Cells/cytology , Fibroblasts/cytology , Gene Knockdown Techniques , Humans , Mice , Necrosis/pathology , Primary Cell Culture , Protein Kinases/physiology , Receptor-Interacting Protein Serine-Threonine Kinases/physiology , Spinal Cord/cytology , Superoxide Dismutase/genetics , Superoxide Dismutase/physiology , Superoxide Dismutase-1
7.
Curr Biol ; 22(12): 1057-65, 2012 Jun 19.
Article in English | MEDLINE | ID: mdl-22658602

ABSTRACT

BACKGROUND: Microtubules (MTs) are formed from the lateral association of 11-16 protofilament chains of tubulin dimers, with most cells containing 13-protofilament (13-p) MTs. How these different MTs are formed is unknown, although the number of protofilaments may depend on the nature of the α- and ß-tubulins. RESULTS: Here we show that the enzymatic activity of the Caenorhabiditis elegans α-tubulin acetyltransferase (α-TAT) MEC-17 allows the production of 15-p MTs in the touch receptor neurons (TRNs) MTs. Without MEC-17, MTs with between 11 and 15 protofilaments are seen. Loss of this enzymatic activity also changes the number and organization of the TRN MTs and affects TRN axonal morphology. In contrast, enzymatically inactive MEC-17 is sufficient for touch sensitivity and proper process outgrowth without correcting the MT defects. Thus, in addition to demonstrating that MEC-17 is required for MT structure and organization, our results suggest that the large number of 15-p MTs, normally found in the TRNs, is not essential for mechanosensation. CONCLUSION: These experiments reveal a specific role for α-TAT in the formation of MTs and in the production of higher order MTs arrays. In addition, our results indicate that the α-TAT protein has functions that require acetyltransferase activity (such as the determination of protofilament number) and others that do not (presence of internal MT structures).


Subject(s)
Acetyltransferases/metabolism , Caenorhabditis elegans Proteins/metabolism , Mechanoreceptors/metabolism , Microtubules/enzymology , Microtubules/physiology , Tubulin/metabolism , Acetylation , Acetyltransferases/genetics , Animals , Caenorhabditis elegans , Caenorhabditis elegans Proteins/genetics , Colchicine , In Situ Hybridization, Fluorescence , Microscopy, Electron , Microtubules/ultrastructure , Mutation/genetics
8.
PLoS One ; 7(1): e28936, 2012.
Article in English | MEDLINE | ID: mdl-22279524

ABSTRACT

The Clinic for Special Children (CSC) has integrated biochemical and molecular methods into a rural pediatric practice serving Old Order Amish and Mennonite (Plain) children. Among the Plain people, we have used single nucleotide polymorphism (SNP) microarrays to genetically map recessive disorders to large autozygous haplotype blocks (mean = 4.4 Mb) that contain many genes (mean = 79). For some, uninformative mapping or large gene lists preclude disease-gene identification by Sanger sequencing. Seven such conditions were selected for exome sequencing at the Broad Institute; all had been previously mapped at the CSC using low density SNP microarrays coupled with autozygosity and linkage analyses. Using between 1 and 5 patient samples per disorder, we identified sequence variants in the known disease-causing genes SLC6A3 and FLVCR1, and present evidence to strongly support the pathogenicity of variants identified in TUBGCP6, BRAT1, SNIP1, CRADD, and HARS. Our results reveal the power of coupling new genotyping technologies to population-specific genetic knowledge and robust clinical data.


Subject(s)
Chromosome Mapping/methods , Exome/genetics , Genetic Predisposition to Disease/genetics , Polymorphism, Single Nucleotide , Sequence Analysis, DNA/methods , Amino Acyl-tRNA Synthetases , Amish/genetics , CRADD Signaling Adaptor Protein , Child , Child, Preschool , Dopamine Plasma Membrane Transport Proteins/genetics , Epilepsy/genetics , Ethnicity/genetics , Genetic Association Studies/methods , Humans , Infant , Infant, Newborn , Intellectual Disability/genetics , Intracellular Signaling Peptides and Proteins/genetics , Membrane Transport Proteins/genetics , Microtubule-Associated Proteins/genetics , Nuclear Proteins/genetics , Parkinsonian Disorders/genetics , RNA-Binding Proteins , Receptors, Virus/genetics , Seizures/genetics , Usher Syndromes/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...