Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Rep ; 20(1): 7, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38124768

ABSTRACT

Chemotherapy with temozolomide (TMZ) is an essential part of anticancer therapy used for malignant tumors (mainly melanoma and glioblastoma); however, the long-term effects on patient health and life quality are not fully investigated. Considering that tumors often occur in elderly patients, the present study was conducted on long-term (4 months) treatment of adult Wistar rats (9 months old, n=40) with TMZ and/or dexamethasone (DXM) to investigate potential behavioral impairments or morphological and molecular changes in their brain tissues. According to the elevated plus maze test, long-term use of TMZ affected the anxiety of the adult Wistar rats, although no significant deterioration of brain morphology or cellular composition of the brain tissue was revealed. The expression levels of all studied heparan sulfate (HS) proteoglycans (HSPGs) (syndecan-1, syndecan-3, glypican-1 and HSPG2) and the majority of the studied chondroitin sulfate (CS) proteoglycans (CSPGs) (decorin, biglycan, lumican, brevican, neurocan aggrecan, versican, Cspg4/Ng2, Cspg5 and phosphacan) were not affected by TMZ/DXM, except for neurocan and aggrecan. Aggrecan was the most sensitive proteoglycan to TMZ/DXM treatment demonstrating downregulation of its mRNA and protein levels following TMZ (-10-fold), DXM (-45-fold) and TMZ-DXM (-80-fold) treatment. HS content was not affected by TMZ/DXM treatment, whereas CS content was decreased 1.5-2.5-fold in the TMZ- and DXM-treated brain tissues. Taken together, the results demonstrated that treatment of adult Wistar rats with TMZ had long-term effects on the brain tissues, such as decreased aggrecan core protein levels and CS chain content and increased anxiety of the experimental animals.

2.
Int J Mol Sci ; 22(24)2021 Dec 12.
Article in English | MEDLINE | ID: mdl-34948147

ABSTRACT

Intensive adjuvant radiotherapy (RT) is a standard treatment for glioblastoma multiforme (GBM) patients; however, its effect on the normal brain tissue remains unclear. Here, we investigated the short-term effects of multiple irradiation on the cellular and extracellular glycosylated components of normal brain tissue and their functional significance. Triple irradiation (7 Gy*3 days) of C57Bl/6 mouse brain inhibited the viability, proliferation and biosynthetic activity of normal glial cells, resulting in a fast brain-zone-dependent deregulation of the expression of proteoglycans (PGs) (decorin, biglycan, versican, brevican and CD44). Complex time-point-specific (24-72 h) changes in decorin and brevican protein and chondroitin sulfate (CS) and heparan sulfate (HS) content suggested deterioration of the PGs glycosylation in irradiated brain tissue, while the transcriptional activity of HS-biosynthetic system remained unchanged. The primary glial cultures and organotypic slices from triple-irradiated brain tissue were more susceptible to GBM U87 cells' adhesion and proliferation in co-culture systems in vitro and ex vivo. In summary, multiple irradiation affects glycosylated components of normal brain extracellular matrix (ECM) through inhibition of the functional activity of normal glial cells. The changed content and pattern of PGs and GAGs in irradiated brain tissues are accompanied by the increased adhesion and proliferation of GBM cells, suggesting a novel molecular mechanism of negative side-effects of anti-GBM radiotherapy.


Subject(s)
Brain Neoplasms , Brain , Cell Proliferation/radiation effects , Gamma Rays , Glioblastoma , Neoplasms, Experimental , Animals , Brain/metabolism , Brain/pathology , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/radiotherapy , Cell Adhesion/radiation effects , Extracellular Matrix Proteins/metabolism , Glioblastoma/metabolism , Glioblastoma/pathology , Glioblastoma/radiotherapy , Male , Mice , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Neoplasms, Experimental/radiotherapy , Proteoglycans/metabolism
3.
Biomedicines ; 8(12)2020 Nov 26.
Article in English | MEDLINE | ID: mdl-33255948

ABSTRACT

Chemotherapy with temozolomide (TMZ) is an essential part of anticancer therapy of various malignant tumours; however, its long-term effects on patients' health and life quality need to be further investigated. Here, we studied the effects of TMZ and/or companion drug dexamethasone (DXM) on the locomotor activity and cartilage structure of elderly Wistar rats (n = 40). Long-term TMZ treatment selectively inhibited the horizontal, but not vertical locomotor activity of the rats (6.7-fold, p < 0.01) and resulted in delamination of the superficial epiphyseal cartilage of the femoral epiphysis of knee joints, a 2-fold decrease in mean thickness of epiphyseal cartilage (p < 0.001), and changes in the proliferative and maturation cartilage zones ratio. The simultaneous use of DXM attenuated TMZ-induced changes in cartilage thickness and integrity and compensated the decrease in horizontal locomotor activity of experimental animals. Nevertheless, combined TMZ/DXM treatment still significantly affected the structure of proximal tibial, but not distal femoral epiphysis of knee joints of the rats. These changes were accompanied by the increased content of total glycosaminoglycans (GAGs) and their partial re-localisation from chondrocytes into tissue matrix, as well as the decrease in sulfated GAGs content in both compartments. Taken together, the results demonstrate that long-term treatment with TMZ results in a significant decrease in locomotor activity of elderly Wistar rats and the reorganisation of their knee joint cartilage structure, while DXM treatment attenuates those effects. So, use of DXM or chondroprotective drugs might be beneficial to maintain quality of life for TMZ-treated cancer patients.

4.
Mol Biol Rep ; 47(7): 5657-5663, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32514998

ABSTRACT

Radiotherapy is an integral part of glioblastoma treatment affecting both cancer cells and tumour microenvironment, where proteoglycans (PGs) are key extracellular components. However, the molecular effects of radiotherapy on PGs expression and functional activity in brain tissue are poorly understood. Here, we aimed to study the short-term effects of X-ray irradiation on PGs expression in normal brain tissue in mouse model in vivo. Two-month-old male CBL/6Bl mice (n = 54) were used in this study, animals' brains were irradiated using either research synchrotron VEPP-4 or clinical linear accelerator ElektaAxesse. Control (n = 18) and irradiated (n = 36) brain tissues were analysed at 24 h, 48 h and 72 h after irradiation. Morphology of the cortex and hippocampus was accessed by H&E staining, and expression of PGs (syndecan-1, glypican-1, HSPG2/perlecan, versican, brevican, neurocan, NG2/CSPG4, CD44, decorin, biglycan) was determined by RT-PCR. Single irradiation of mouse brain with a 7 Gy dose did not affect tissue morphology and mRNA levels of most highly-expressed PGs decorin and neurocan, although resulted in significant downregulation of brevican (3-10-fold) and NG2/CSPG4 (8-9-fold) expression both in cerebral cortex and subcortex. Research synchrotron and clinical linear accelerators demonstrated minor variability in their effects. Single X-ray irradiation with a 7 Gy dose does not significantly affect the mouse brain tissue morphology but selectively decreases expression levels of some PGs. The downregulation of brevican and NG2/CSPG4 but not decorin and neurocan reflects alteration of extracellular matrix in irradiated brain tissue, which might contribute to the formation of a permissive microenvironment for glioblastoma relapse development.


Subject(s)
Gene Expression/radiation effects , Proteoglycans/radiation effects , X-Rays/adverse effects , Animals , Brain/metabolism , Extracellular Matrix/metabolism , Extracellular Matrix Proteins/metabolism , Gene Expression Regulation, Neoplastic/radiation effects , Glioblastoma/radiotherapy , Male , Mice , Mice, Inbred C57BL , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/radiotherapy , Proteoglycans/genetics , RNA, Messenger/genetics , X-Ray Therapy/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...