Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Mutat Res Genet Toxicol Environ Mutagen ; 836(Pt A): 13-21, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30389156

ABSTRACT

Human malignancies are often hallmarked with genomic instability, which itself is also considered a causative event in malignant transformation. Genomic instability may manifest itself as genetic changes in the nucleotide sequence of DNA, or as structural or numerical changes of chromosomes. Unrepaired or insufficiently repaired DNA double-strand breaks, as well as telomere shortening, are important contributors in the formation of structural chromosomal aberrations (CAs). In the present review, we discuss potential mechanisms behind the formation of CAs and their relation to cancer. Based on our own studies, we also illustrate how inherited genetic variation may modify the frequency and types of CAs occurring in humans. Recently, we published a series of studies on variations in genes relevant to maintaining genomic integrity, such as those encoding xenobiotic-metabolising enzymes, DNA repair, the tumour suppressor TP53, the spindle assembly checkpoint, and cyclin D1 (CCND1). While individually genetic variation in these genes exerted small modulating effects, in interactions they were associated with CA frequencies in peripheral blood lymphocytes of healthy volunteers. Moreover, we observed opposite associations between the CCND1 splice site polymorphism rs9344 G870A and the frequency of CAs compared to their association with translocation t(11,14). We discuss the functional consequences of the CCND1 gene in interplay with DNA damage response and DNA repair during malignant transformation. Our review summarizes existing evidence that gene variations in relevant cellular pathways modulate the frequency of CAs, predominantly in a complex interaction. More functional/mechanistic studies elucidating these observations are required. Several questions emerge, such as the role of CAs in malignancies with respect to a particular phenotype and heterogeneity, the formation of CAs during the process of malignant transformation, and the formation of CAs in individual types of lymphocytes in relation to the immune response.


Subject(s)
Chromosome Aberrations , DNA Damage , DNA Repair , Neoplasms/genetics , Neoplasms/pathology , Polymorphism, Genetic , Humans
2.
PLoS One ; 10(7): e0134463, 2015.
Article in English | MEDLINE | ID: mdl-26226484

ABSTRACT

Variations in the TP53 gene have been suggested to play a role in many cancers, including breast. We previously observed an association between TP53 haplotypes based on four polymorphisms (rs17878362, rs1042522, rs12947788, and rs17884306) and the risk of colorectal and pancreatic cancer. Based on these results, in the present study, we have investigated the same polymorphisms and their haplotypes in 705 breast cancer cases and 611 healthy controls in relation to the disease risk, histopathological features of the tumor and clinical outcomes. In comparison to the most common haplotype A1-G-C-G, all the other identified haplotypes were globally associated with a significantly decreased breast cancer risk (P = 0.006). In particular, the A2-G-C-G haplotype was associated with a marked decreased risk of breast cancer when compared with the common haplotype (P = 0.0001). Moreover, rs1042522 in patients carrying the GC genotype and receiving only the anthracycline-based chemotherapy was associated with both overall and disease-free survival (recessive model for overall survival HR = 0.30 95% CI 0.11-0.80, P = 0.02 and for disease-free survival HR = 0.42 95% CI 0.21-0.84, P = 0.01). Present results suggest common genetic features in the susceptibility to breast and gastrointestinal cancers in respect to TP53 variations. In fact, similar haplotype distributions were observed for breast, colorectal, and pancreatic patients in associations with cancer risk. Rs1042522 polymorphism (even after applying the Dunn-Bonferroni correction for multiple testing) appears to be an independent prognostic marker in breast cancer patients.


Subject(s)
Breast Neoplasms/genetics , Genes, p53/genetics , Aged , Aged, 80 and over , Case-Control Studies , Female , Genetic Predisposition to Disease/genetics , Genotype , Haplotypes/genetics , Humans , Middle Aged , Polymorphism, Single Nucleotide/genetics , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL