Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biol Rep ; 47(5): 3867-3883, 2020 May.
Article in English | MEDLINE | ID: mdl-32372170

ABSTRACT

Here, we document changes in cell motility and organization of the contractile apparatus of human umbilical cord Wharton's jelly mesenchymal stem cells (MSCWJ-1) in the process of replicative senescence. Colocalization dynamics of F-actin and actin-binding proteins (myosin-9, α-actinin-4, RhoA) were examined in the MSCWJ-1 cell line. The results show that nuclear-cytoplasmic redistribution of RhoA occurs during replicative senescence, with maximal RhoA/nucleus colocalization evident at passage 15. At that time point, decreases in colocalization, namely myosin-9/F-actin and α-actinin-4/F-actin, were seen and myosin-9 was found in cytosolic extracts in the assembly-incompetent form. Using an automated intravital confocal cytometry system and quantitative analysis of MSCWJ-1 movements, we found that changes in cytoskeletal organization correlate with cell motility characteristics over a time period from passages 9 to 38. The factors examined (cytoskeleton structure, cell motility) indicate that the process by which cells transition to replicative senescence is best represented as three stages. The first stage lasts from cell culture isolation to passage 15 and is characterized by: accumulation of actin-binding proteins in assembly-incompetent forms; nuclear RhoA accumulation; and an increase in movement tortuosity. The second stage extends from passages 15 to 28 and is characterized by: an increase in the structural integrity of the actin cytoskeleton; exit of RhoA and alpha-actinin-4 from the nucleus; and a decrease in path tortuosity. The third stage extends from passage 28 to 38 and is marked by: a plateau in actin cytoskeleton structural integrity; significant decreases in nuclear RhoA levels; and decreases in cell speed.


Subject(s)
Cell Movement/physiology , Cellular Senescence/physiology , rhoA GTP-Binding Protein/metabolism , Actinin/genetics , Actinin/metabolism , Actins/metabolism , Aging/genetics , Aging/metabolism , Cell Line , Cell Nucleus/metabolism , Cytoskeleton/metabolism , Fetal Blood/metabolism , Humans , Mesenchymal Stem Cells/metabolism , Myosins/metabolism , Umbilical Cord
2.
Stem Cells Int ; 2011: 795239, 2011.
Article in English | MEDLINE | ID: mdl-21785609

ABSTRACT

Pluripotent stem cells can differentiate into various lineages but undergo genetic and epigenetic changes during long-term cultivation and, therefore, require regular monitoring. The expression patterns of cancer-testis antigens (CTAs) MAGE-A2, -A3, -A4, -A6, -A8, -B2, and GAGE were examined in undifferentiated human embryonic stem (hES) cells, their differentiated derivatives, teratocarcinoma (hEC) cells, and cancer cell lines of neuroectodermal and mesodermal origin. Undifferentiated hES cells and embryoid body cells expressed MAGE-A3, -A6, -A4, -A8, and GAGEs while later differentiated derivatives expressed only MAGE-A8 or MAGE-A4. Likewise, mouse pluripotent stem cells also express CTAs of Magea but not Mageb family. Despite similarity of the hES and hEC cell expression patterns, MAGE-A2 and MAGE-B2 were detected only in hEC cells but not in hES cells. Moreover, our analysis has shown that CTAs are aberrantly expressed in cancer cell lines and display low tissue specificity. The identification of CTA expression patterns in pluripotent stem cells and their derivatives may be useful for isolation of abnormally CTA-expressing cells to improve the safety of stem-cell based therapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...