Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Plant Cell ; 34(7): 2594-2614, 2022 07 04.
Article in English | MEDLINE | ID: mdl-35435236

ABSTRACT

The receptor kinase FERONIA (FER) is a versatile regulator of plant growth and development, biotic and abiotic stress responses, and reproduction. To gain new insights into the molecular interplay of these processes and to identify new FER functions, we carried out quantitative transcriptome, proteome, and phosphoproteome profiling of Arabidopsis (Arabidopsis thaliana) wild-type and fer-4 loss-of-function mutant plants. Gene ontology terms for phytohormone signaling, abiotic stress, and biotic stress were significantly enriched among differentially expressed transcripts, differentially abundant proteins, and/or misphosphorylated proteins, in agreement with the known roles for FER in these processes. Analysis of multiomics data and subsequent experimental evidence revealed previously unknown functions for FER in endoplasmic reticulum (ER) body formation and glucosinolate biosynthesis. FER functions through the transcription factor NAI1 to mediate ER body formation. FER also negatively regulates indole glucosinolate biosynthesis, partially through NAI1. Furthermore, we found that a group of abscisic acid (ABA)-induced transcription factors is hypophosphorylated in the fer-4 mutant and demonstrated that FER acts through the transcription factor ABA INSENSITIVE5 (ABI5) to negatively regulate the ABA response during cotyledon greening. Our integrated omics study, therefore, reveals novel functions for FER and provides new insights into the underlying mechanisms of FER function.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Abscisic Acid/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Carrier Proteins/metabolism , Gene Expression Regulation, Plant/genetics , Glucosinolates/metabolism , Phosphotransferases/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
2.
Plant J ; 107(5): 1387-1402, 2021 09.
Article in English | MEDLINE | ID: mdl-34165836

ABSTRACT

Cytokinins regulate diverse aspects of plant growth and development, primarily through modulation of gene expression. The cytokinin-responsive transcriptome has been thoroughly described in dicots, especially Arabidopsis, but much less so in monocots. Here, we present a meta-analysis of five different transcriptomic analyses of rice (Oryza sativa) roots treated with cytokinin, including three previously unpublished experiments. We developed a treatment method in which hormone is added to the media of rice seedlings grown in sterile hydroponic culture under a continuous airflow, which resulted in minimal perturbation of the seedlings, thus greatly reducing changes in gene expression in the absence of exogenous hormone. We defined a core set of 205 upregulated and 86 downregulated genes that were differentially expressed in at least three of the transcriptomic datasets. This core set includes genes encoding the type-A response regulators (RRs) and cytokinin oxidases/dehydrogenases, which have been shown to be primary cytokinin response genes. GO analysis revealed that the upregulated genes were enriched for terms related to cytokinin/hormone signaling and metabolism, while the downregulated genes were significantly enriched for genes encoding transporters. Variations of type-B RR binding motifs were significantly enriched in the promoters of the upregulated genes, as were binding sites for other potential partner transcription factors. The promoters of the downregulated genes were generally enriched for distinct cis-acting motifs and did not include the type-B RR binding motif. This analysis provides insight into the molecular mechanisms underlying cytokinin action in a monocot and provides a useful foundation for future studies of this hormone in rice and other cereals.


Subject(s)
Cytokinins/pharmacology , Gene Expression Regulation, Plant , Oryza/genetics , Plant Growth Regulators/pharmacology , Signal Transduction , Transcriptome/drug effects , Acetylation , Gene Expression Profiling , Oryza/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/genetics , Plant Roots/physiology , Promoter Regions, Genetic/genetics , Seedlings/genetics , Seedlings/physiology , Wounds and Injuries
3.
Plant Cell ; 31(2): 282-296, 2019 02.
Article in English | MEDLINE | ID: mdl-30647077

ABSTRACT

Cell walls define the shape of plant cells, controlling the extent and orientation of cell elongation, and hence organ growth. The main load-bearing component of plant cell walls is cellulose, and how plants regulate its biosynthesis during development and in response to various environmental perturbations is a central question in plant biology. Cellulose is synthesized by cellulose synthase (CESA) complexes (CSCs) that are assembled in the Golgi apparatus and then delivered to the plasma membrane (PM), where they actively synthesize cellulose. CSCs travel along cortical microtubule paths that define the orientation of synthesis of the cellulose microfibrils. CSCs recycle between the PM and various intracellular compartments, and this trafficking plays an important role in determining the level of cellulose synthesized. In this review, we summarize recent findings in CESA complex organization, CESA posttranslational modifications and trafficking, and other components that interact with CESAs. We also discuss cell wall integrity maintenance, with a focus on how this impacts cellulose biosynthesis.


Subject(s)
Arabidopsis/metabolism , Cell Membrane/metabolism , Cellulose/biosynthesis , Microtubules/metabolism , Protein Processing, Post-Translational/genetics , Protein Processing, Post-Translational/physiology
4.
Front Plant Sci ; 10: 1602, 2019.
Article in English | MEDLINE | ID: mdl-31921251

ABSTRACT

1-Aminocyclopropane 1-carboxylic acid (ACC) is the direct precursor of the plant hormone ethylene. ACC is synthesized from S-adenosyl-L-methionine (SAM) by ACC synthases (ACSs) and subsequently oxidized to ethylene by ACC oxidases (ACOs). Exogenous ACC application has been used as a proxy for ethylene in numerous studies as it is readily converted by nearly all plant tissues to ethylene. However, in recent years, a growing body of evidence suggests that ACC plays a signaling role independent of the biosynthesis. In this review, we briefly summarize our current knowledge of ACC as an ethylene precursor, and present new findings with regards to the post-translational modifications of ACS proteins and to ACC transport. We also summarize the role of ACC in regulating plant development, and its involvement in cell wall signaling, guard mother cell division, and pathogen virulence.

5.
Curr Biol ; 28(19): 3174-3182.e6, 2018 10 08.
Article in English | MEDLINE | ID: mdl-30245104

ABSTRACT

Cell walls play critical roles in plants, regulating tissue mechanics, defining the extent and orientation of cell expansion, and providing a physical barrier against pathogen attack [1]. Cellulose microfibrils, which are synthesized by plasma membrane-localized cellulose synthase (CESA) complexes, are the primary load-bearing elements of plant cell walls [2]. Cell walls are dynamic structures that are regulated in part by cell wall integrity (CWI)-monitoring systems that feed back to modulate wall properties and the synthesis of new wall components [3]. Several receptor-like kinases have been implicated as sensors of CWI [3-5], including the FEI1/FEI2 receptor-like kinases [4]. Here, we characterize two genes encoding novel plant-specific plasma membrane proteins (SHOU4 and SHOU4L) that were identified in a suppressor screen of the cellulose-deficient fei1 fei2 mutant. shou4 shou4l double mutants display phenotypes consistent with elevated levels of cellulose, and elevated levels of non-crystalline cellulose are present in this mutant. Disruption of SHOU4 and SHOU4L increases the abundance of CESA proteins at the plasma membrane as a result of enhanced exocytosis. The SHOU4/4L N-terminal cytosolic domains directly interact with CESAs. Our results suggest that the SHOU4 proteins regulate cellulose synthesis in plants by influencing the trafficking of CESA complexes to the cell surface.


Subject(s)
Cell Wall/genetics , Cellulose/biosynthesis , Glucosyltransferases/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Cell Membrane/metabolism , Cell Membrane/physiology , Cell Wall/metabolism , Exocytosis/physiology , Glucosyltransferases/genetics , Membrane Proteins/metabolism , Protein Transport/physiology
6.
Plant Physiol ; 169(1): 194-208, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26041787

ABSTRACT

Upward leaf movement (hyponastic growth) is frequently observed in response to changing environmental conditions and can be induced by the phytohormone ethylene. Hyponasty results from differential growth (i.e. enhanced cell elongation at the proximal abaxial side of the petiole relative to the adaxial side). Here, we characterize Enhanced Hyponasty-d, an activation-tagged Arabidopsis (Arabidopsis thaliana) line with exaggerated hyponasty. This phenotype is associated with overexpression of the mitotic cyclin CYCLINA2;1 (CYCA2;1), which hints at a role for cell divisions in regulating hyponasty. Indeed, mathematical analysis suggested that the observed changes in abaxial cell elongation rates during ethylene treatment should result in a larger hyponastic amplitude than observed, unless a decrease in cell proliferation rate at the proximal abaxial side of the petiole relative to the adaxial side was implemented. Our model predicts that when this differential proliferation mechanism is disrupted by either ectopic overexpression or mutation of CYCA2;1, the hyponastic growth response becomes exaggerated. This is in accordance with experimental observations on CYCA2;1 overexpression lines and cyca2;1 knockouts. We therefore propose a bipartite mechanism controlling leaf movement: ethylene induces longitudinal cell expansion in the abaxial petiole epidermis to induce hyponasty and simultaneously affects its amplitude by controlling cell proliferation through CYCA2;1. Further corroborating the model, we found that ethylene treatment results in transcriptional down-regulation of A2-type CYCLINs and propose that this, and possibly other regulatory mechanisms affecting CYCA2;1, may contribute to this attenuation of hyponastic growth.


Subject(s)
Arabidopsis/physiology , Cyclin A2/metabolism , Ethylenes/metabolism , Gene Expression Regulation, Plant , Plant Growth Regulators/metabolism , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/radiation effects , Cell Proliferation , Cyclin A2/genetics , Down-Regulation , Hypocotyl/genetics , Hypocotyl/growth & development , Hypocotyl/physiology , Hypocotyl/radiation effects , Light , Models, Biological , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/physiology , Plant Leaves/radiation effects
7.
PLoS One ; 9(5): e98193, 2014.
Article in English | MEDLINE | ID: mdl-24859261

ABSTRACT

The plant cell wall is a highly dynamic structure that changes in response to both environmental and developmental cues. It plays important roles throughout plant growth and development in determining the orientation and extent of cell expansion, providing structural support and acting as a barrier to pathogens. Despite the importance of the cell wall, the signaling pathways regulating its function are not well understood. Two partially redundant leucine-rich-repeat receptor-like kinases (LRR-RLKs), FEI1 and FEI2, regulate cell wall function in Arabidopsis thaliana roots; disruption of the FEIs results in short, swollen roots as a result of decreased cellulose synthesis. We screened for suppressors of this swollen root phenotype and identified two mutations in the putative mitochondrial pyruvate dehydrogenase E1α homolog, IAA-Alanine Resistant 4 (IAR4). Mutations in IAR4 were shown previously to disrupt auxin homeostasis and lead to reduced auxin function. We show that mutations in IAR4 suppress a subset of the fei1 fei2 phenotypes. Consistent with the hypothesis that the suppression of fei1 fei2 by iar4 is the result of reduced auxin function, disruption of the WEI8 and TAR2 genes, which decreases auxin biosynthesis, also suppresses fei1 fei2. In addition, iar4 suppresses the root swelling and accumulation of ectopic lignin phenotypes of other cell wall mutants, including procuste and cobra. Further, iar4 mutants display decreased sensitivity to the cellulose biosynthesis inhibitor isoxaben. These results establish a role for IAR4 in the regulation of cell wall function and provide evidence of crosstalk between the cell wall and auxin during cell expansion in the root.


Subject(s)
Arabidopsis/metabolism , Cell Proliferation/physiology , Cell Wall/metabolism , Homeostasis/physiology , Indoleacetic Acids/metabolism , Plant Roots/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Benzamides/pharmacology , Cell Proliferation/drug effects , Cell Wall/genetics , Cellulose/biosynthesis , Cellulose/genetics , Homeostasis/drug effects , Lignin/biosynthesis , Lignin/genetics , Mutation , Plant Roots/genetics , Protein Kinases/genetics , Protein Kinases/metabolism , Pyruvate Decarboxylase/genetics , Pyruvate Decarboxylase/metabolism
8.
J Exp Bot ; 64(2): 613-24, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23264517

ABSTRACT

Upward leaf movement, called hyponastic growth, is employed by plants to cope with adverse environmental conditions. Ethylene is a key regulator of this process and, in Arabidopsis thaliana, hyponasty is induced by this phytohormone via promotion of epidermal cell expansion in a proximal zone of the abaxial side of the petiole. ROTUNDIFOLIA3/CYP90C1 encodes an enzyme which was shown to catalyse C-23 hydroxylation of several brassinosteroids (BRs) - phytohormones involved in, for example, organ growth, cell expansion, cell division, and responses to abiotic and biotic stresses. This study tested the interaction between ethylene and BRs in regulating hyponastic growth. A mutant isolated in a forward genetic screen, with reduced hyponastic response to ethylene treatment, was allelic to rot3. The cause of the reduced hyponastic growth in this mutant was examined by studying ethylene-BR interaction during local cell expansion, pharmacological inhibition of BR synthesis and ethylene effects on transcription of BR-related genes. This work demonstrates that rot3 mutants are impaired in local cell expansion driving hyponasty. Moreover, the inhibition of BR biosynthesis reduces ethylene-induced hyponastic growth and ethylene increases sensitivity to BR in promoting cell elongation in Arabidopsis hypocotyls. Together, the results show that ROT3 modulates ethylene-induced petiole movement and that this function is likely BR related.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Cytochrome P-450 Enzyme System/metabolism , Ethylenes/metabolism , Hypocotyl/growth & development , Plant Growth Regulators/metabolism , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Cytochrome P-450 Enzyme System/genetics , Gene Expression Regulation, Plant , Hypocotyl/enzymology , Hypocotyl/genetics , Hypocotyl/metabolism , Plant Leaves/enzymology , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/metabolism , Protein Binding
10.
Planta ; 235(4): 677-85, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22009062

ABSTRACT

Upward leaf movement (hyponastic growth) is adopted by several plant species including Arabidopsis thaliana, as a mechanism to escape adverse growth conditions. Among the signals that trigger hyponastic growth are, the gaseous hormone ethylene, low light intensities, and supra-optimal temperatures (heat). Recent studies indicated that the defence-related phytohormones jasmonic acid (JA) and salicylic acid (SA) synthesized by the plant upon biotic infestation repress low light-induced hyponastic growth. The hyponastic growth response induced by high temperature (heat) treatment and upon application of the gaseous hormone ethylene is highly similar to the response induced by low light. To test if these environmental signals induce hyponastic growth via parallel pathways or converge downstream, we studied here the roles of Methyl-JA (MeJA) and SA on ethylene- and heat-induced hyponastic growth. For this, we used a time-lapse camera setup. Our study includes pharmacological application of MeJA and SA and biological infestation using the JA-inducing caterpillar Pieris rapae as well as mutants lacking JA or SA signalling components. The data demonstrate that MeJA is a positive, and SA, a negative regulator of ethylene-induced hyponastic growth and that both hormones repress the response to heat. Taking previous studies into account, we conclude that SA is the first among many tested components which is repressing hyponastic growth under all tested inductive environmental stimuli. However, since MeJA is a positive regulator of ethylene-induced hyponastic growth and is inhibiting low light- and heat-induced leaf movement, we conclude that defence hormones control hyponastic growth by affecting stimulus-specific signalling pathways.


Subject(s)
Arabidopsis/physiology , Cyclopentanes/pharmacology , Oxylipins/pharmacology , Salicylates/pharmacology , Arabidopsis/drug effects , Arabidopsis/growth & development , Arabidopsis/metabolism , Cyclopentanes/metabolism , Ethylenes/metabolism , Hot Temperature , Oxylipins/metabolism , Plant Growth Regulators/metabolism , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Leaves/physiology , Salicylates/metabolism , Signal Transduction , Tropism/drug effects
11.
New Phytol ; 193(2): 339-48, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21973123

ABSTRACT

• Hyponastic growth is an upward petiole movement induced by plants in response to various external stimuli. It is caused by unequal growth rates between adaxial and abaxial sides of the petiole, which bring rosette leaves to a more vertical position. The volatile hormone ethylene is a key regulator inducing hyponasty in Arabidopsis thaliana. Here, we studied whether ethylene-mediated hyponasty occurs through local stimulation of cell expansion and whether this involves the reorientation of cortical microtubules (CMTs). • To study cell size differences between the two sides of a petiole in ethylene and control conditions, we analyzed epidermal imprints. We studied the involvement of CMT orientation in epidermal cells using the tubulin marker line as well as genetic and pharmacological means of CMT manipulation. • Our results demonstrate that ethylene induces cell expansion at the abaxial side of the- petiole and that this can account for the observed differential growth. At the abaxial side, ethylene induces CMT reorientation from longitudinal to transverse, whereas, at the adaxial side, it has an opposite effect. The inhibition of CMTs disturbed ethylene-induced hyponastic growth. • This work provides evidence that ethylene stimulates cell expansion in a tissue-specific manner and that it is associated with tissue-specific changes in the arrangement of CMTs along the petiole.


Subject(s)
Arabidopsis/cytology , Arabidopsis/growth & development , Ethylenes/pharmacology , Microtubules/metabolism , Plant Leaves/cytology , Plant Leaves/growth & development , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cell Proliferation/drug effects , Dinitrobenzenes/pharmacology , Gene Expression Regulation, Plant/drug effects , Microtubules/drug effects , Models, Biological , Plant Epidermis/cytology , Plant Epidermis/drug effects , Plant Leaves/drug effects , Plant Leaves/genetics , Sulfanilamides/pharmacology
12.
AoB Plants ; 2011: plr031, 2011.
Article in English | MEDLINE | ID: mdl-22476501

ABSTRACT

BACKGROUND: Many plant species can actively reorient their organs in response to dynamic environmental conditions. Organ movement can be an integral part of plant development or can occur in response to unfavourable external circumstances. These active reactions take place with or without a directional stimulus and can be driven either by changes in turgor pressure or by asymmetric growth. Petiole hyponasty is upward movement driven by a higher rate of cell expansion on the lower (abaxial) compared with the upper (adaxial) side. Hyponasty is common among rosette species facing environmental stresses such as flooding, proximity of neighbours or elevated ambient temperature. The complex regulatory mechanism of hyponasty involves activation of pathways at molecular and developmental levels, with ethylene playing a crucial role. SCOPE: We present current knowledge on the mechanisms that promote hyponasty in the context of other organ movements, including tropic and nastic reactions together with circumnutation. We describe major environmental cues resulting in hyponasty and briefly discuss their perception and signal transduction. Since ethylene is a central agent triggering hyponasty, we focus on ethylene in controlling different stages during plant development and summarize current knowledge on the relationship between ethylene and cell growth.

SELECTION OF CITATIONS
SEARCH DETAIL
...