Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 100
Filter
1.
J Inherit Metab Dis ; 44(4): 1021-1038, 2021 07.
Article in English | MEDLINE | ID: mdl-33337545

ABSTRACT

Rhizomelic chondrodysplasia punctata (RCDP) is a heterogenous group of disorders due to defects in genes encoding peroxisomal proteins required for plasmalogen (PL) biosynthesis, specifically PEX7 and PEX5 receptors, or GNPAT, AGPS and FAR1 enzymes. Most patients have congenital cataract and skeletal dysplasia. In the classic form, there is profound growth restriction and psychomotor delays, with most patients not advancing past infantile developmental milestones. Disease severity correlates to erythrocyte PL levels, which are almost undetectable in severe (classic) RCDP. In milder (nonclassic) forms, residual PL levels are associated with improved growth and development. However, the clinical course of this milder group remains largely unknown as only a few cases were reported. Using as inclusion criteria the ability to communicate and walk, we identified 16 individuals from five countries, ages 5-37 years, and describe their clinical, biochemical and molecular profiles. The average age at diagnosis was 2.6 years and most had cataract, growth deficiency, joint contractures, and developmental delays. Other major symptoms were learning disability (87%), behavioral issues (56%), seizures (43%), and cardiac defects (31%). All patients had decreased C16:0 PL levels that were higher than in classic RCDP, and up to 43% of average controls. Plasma phytanic acid levels were elevated in most patients. There were several common, and four novel, PEX7, and GNPAT hypomorphic alleles in this cohort. These results can be used to support earlier diagnosis and improve management in patients with mild RCDP.


Subject(s)
Chondrodysplasia Punctata, Rhizomelic/diagnosis , Genetic Association Studies , Growth Charts , Adolescent , Adult , Child , Child, Preschool , Chondrodysplasia Punctata, Rhizomelic/genetics , Female , Humans , Male , Young Adult
2.
Neuropediatrics ; 52(3): 163-169, 2021 06.
Article in English | MEDLINE | ID: mdl-33111306

ABSTRACT

BACKGROUND: Pontocerebellar hypoplasia (PCH) is a rare group of disorders mainly affecting the cerebellum and pons. Supratentorial structures are variably involved. We assessed brain growth patterns in patients with the most frequent forms of PCH, namely PCH1B (OMIM#614678) and PCH2A (OMIM#277470), since in these types of PCH, pre- and postnatal neurodegeneration is established by neuropathological profiling. To assess the influence of the different pathomechanisms on postnatal growth patterns, we included CASK-associated microcephaly and PCH (MICPCH, OMIM#300749) patients in our analyses, as MICPH mimics PCH on magnetic resonance imaging (MRI) but represents a developmental disorder including abnormal neuronal migration. METHODS: A total of 66 patients were included: 9 patients with PCH1B, 18 patients with PCH2A, 6 patients with MICPCH, and 33 age- and gender-matched hospital-based controls. Segmentation of the vermis and cerebellum was performed manually, as were measurements of the thickness of the head of the caudate nucleus, the width of the anterior horn, and lateral ventricle size. RESULTS: The cerebellum was severely hypoplastic at birth in all patients, and postnatal growth was nearly absent. In patients with PCH1B/2A, we found relative sparing of the vermis compared with the cerebellar hemispheres. In addition, PCH1B and PCH2A cases demonstrated thinning of the head of the caudate nucleus, an associated increase in anterior horn width, and an increase in lateral ventricle size. None of these features were seen in the MICPCH group. CONCLUSIONS: Our findings confirm the progressive nature including caudate nucleus atrophy in PCH1B and PCH2A. In MICPCH, the relative sparing of supratentorial structures confirms its different pathomechanism.


Subject(s)
Cerebellar Diseases , Olivopontocerebellar Atrophies , Brain/diagnostic imaging , Brain/pathology , Cerebellar Diseases/diagnostic imaging , Cerebellar Diseases/pathology , Cerebellum/pathology , Humans , Infant, Newborn , Magnetic Resonance Imaging , Olivopontocerebellar Atrophies/diagnostic imaging , Olivopontocerebellar Atrophies/pathology
5.
J Neurol ; 267(3): 679-687, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31720823

ABSTRACT

BACKGROUND: Progressive myelopathy is the main cause of disability in adrenoleukodystrophy (ALD). Development of therapies is hampered by a lack of quantitative outcome measures. In this study, we investigated whether myelopathy in ALD is associated with retinal neurodegeneration on optical coherence tomography (OCT), which could serve as a surrogate outcome measure. METHODS: Sixty-two patients (29 men and 33 women) and 70 age-matched and sex-matched controls (33 men and 37 women) were included in this cross-sectional study. We compared retinal nerve fiber layer (RNFL), ganglion cell layer (GCL) and peripapillary retinal nerve fiber layer (pRNFL) thickness between ALD patients and controls. In addition, we correlated these OCT measurements with clinical parameters of severity of myelopathy. RESULTS: Patients had significantly thinner RNFL (male group, p < 0.05) and pRNFL superior and temporal quadrant [both male (p < 0.005) and female (p < 0.05) groups] compared to controls. Comparing three groups (symptomatic patients, asymptomatic patients and controls), there were significant differences in RNFL thickness (total grid and peripheral ring) in the male group (p ≤ 0.002) and in pRNFL thickness (superior and temporal quadrant) in both male (p ≤ 0.02) and the female (p ≤ 0.02) groups. Neuroretinal layer thickness correlated moderately with severity of myelopathy in men (correlation coefficients between 0.29-0.55, p < 0.02), but not in women. CONCLUSIONS: These results suggest that neurodegeneration of the spinal cord in ALD is reflected in the retina of patients with ALD. Therefore, OCT could be valuable as an outcome measure for the myelopathy of ALD. Additional longitudinal studies are ongoing.


Subject(s)
Adrenoleukodystrophy/diagnostic imaging , Retina/diagnostic imaging , Spinal Cord Diseases/diagnostic imaging , Tomography, Optical Coherence/methods , Adrenoleukodystrophy/complications , Adult , Cross-Sectional Studies , Female , Humans , Image Interpretation, Computer-Assisted/methods , Male , Middle Aged , Nerve Degeneration/diagnostic imaging , Nerve Degeneration/etiology , Neuroimaging/methods , Retina/pathology , Spinal Cord Diseases/etiology
7.
Biochim Biophys Acta Mol Basis Dis ; 1865(10): 2774-2787, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31207289

ABSTRACT

Zellweger spectrum disorders (ZSDs) are autosomal recessive diseases caused by defective peroxisome assembly. They constitute a clinical continuum from severe early lethal to relatively milder presentations in adulthood. Liver disease is a prevalent symptom in ZSD patients. The underlying pathogenesis for the liver disease, however, is not fully understood. We report a hypomorphic ZSD mouse model, which is homozygous for Pex1-c.2531G>A (p.G844D), the equivalent of the most common pathogenic variant found in ZSD, and which predominantly presents with liver disease. After introducing the Pex1-G844D allele by knock-in, we characterized homozygous Pex1-G844D mice for survival, biochemical parameters, including peroxisomal and mitochondrial functions, organ histology, and developmental parameters. The first 20 post-natal days (P20) were critical for survival of homozygous Pex1-G844D mice (~20% survival rate). Lethality was likely due to a combination of cholestatic liver problems, liver dysfunction and caloric deficit, probably as a consequence of defective bile acid biosynthesis. Survival beyond P20 was nearly 100%, but surviving mice showed a marked delay in growth. Surviving mice showed similar hepatic problems as described for mild ZSD patients, including hepatomegaly, bile duct proliferation, liver fibrosis and mitochondrial alterations. Biochemical analyses of various tissues showed the absence of functional peroxisomes accompanied with aberrant levels of peroxisomal metabolites predominantly in the liver, while other tissues were relatively spared. ur findings show that homozygous Pex1-G844D mice have a predominant liver disease phenotype, mimicking the hepatic pathology of ZSD patients, and thus constitute a good model to study pathogenesis and treatment of liver disease in ZSD patients.


Subject(s)
ATPases Associated with Diverse Cellular Activities/metabolism , Liver Diseases/etiology , Liver Diseases/metabolism , Liver/metabolism , Zellweger Syndrome/complications , ATPases Associated with Diverse Cellular Activities/genetics , Alleles , Animals , Disease Models, Animal , Female , Fibroblasts , Humans , Liver/pathology , Liver Diseases/pathology , Male , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/metabolism , Peroxisomes , Phenotype
8.
J Inherit Metab Dis ; 42(5): 955-965, 2019 09.
Article in English | MEDLINE | ID: mdl-31150129

ABSTRACT

Patients with a Zellweger spectrum disorder (ZSD) have a defect in the assembly or maintenance of peroxisomes, leading to a multisystem disease with variable outcome. Liver disease is an important feature in patients with severe and milder phenotypes and a frequent cause of death. However, the course and histology of liver disease in ZSD patients are ill-defined. We reviewed the hepatic symptoms and histological findings of 13 patients with a ZSD in which one or several liver biopsies have been performed (patient age 0.2-39 years). All patients had at least some histological liver abnormalities, ranging from minor fibrosis to cirrhosis. Five patients demonstrated significant disease progression with liver failure and early death. In others, liver-related symptoms were absent, although some still silently developed cirrhosis. Patients with peroxisomal mosaicism had a better prognosis. In addition, we show that patients are at risk to develop a hepatocellular carcinoma (HCC), as one patient developed a HCC at the age of 36 years and one patient a precancerous lesion at the age of 18 years. Thus, regular examination to detect fibrosis or cirrhosis should be included in the standard care of ZSD patients. In case of advanced fibrosis/cirrhosis expert consultation and HCC screening should be initiated. This study further delineates the spectrum and significance of liver involvement in ZSDs.


Subject(s)
Carcinoma, Hepatocellular/etiology , Liver Cirrhosis/etiology , Liver Neoplasms/etiology , Liver/pathology , Zellweger Syndrome/complications , Adolescent , Adult , Carcinoma, Hepatocellular/pathology , Child , Child, Preschool , Disease Progression , Female , Humans , Infant , Liver Cirrhosis/pathology , Liver Neoplasms/pathology , Male , Middle Aged , Netherlands , Peroxisomes/genetics , Zellweger Syndrome/genetics
9.
J Inherit Metab Dis ; 42(2): 303-312, 2019 03.
Article in English | MEDLINE | ID: mdl-30793331

ABSTRACT

INTRODUCTION: Currently, no therapies are available for Zellweger spectrum disorders (ZSDs), a group of genetic metabolic disorders characterised by a deficiency of functional peroxisomes. In a previous study, we showed that oral cholic acid (CA) treatment can suppress bile acid synthesis in ZSD patients and, thereby, decrease plasma levels of toxic C27 -bile acid intermediates, one of the biochemical abnormalities in these patients. However, no effect on clinically relevant outcome measures could be observed after 9 months of CA treatment. It was noted that, in patients with advanced liver disease, caution is needed because of possible hepatotoxicity. METHODS: An extension study of the previously conducted pretest-posttest design study was conducted including 17 patients with a ZSD. All patients received oral CA for an additional period of 12 months, encompassing a total of 21 months of treatment. Multiple clinically relevant parameters and markers for bile acid synthesis were assessed after 15 and 21 months of treatment. RESULTS: Bile acid synthesis was still suppressed after 21 months of CA treatment, accompanied with reduced levels of C27 -bile acid intermediates in plasma. These levels significantly increased again after discontinuation of CA. No significant changes were found in liver tests, liver elasticity, coagulation parameters, fat-soluble vitamin levels or body weight. CONCLUSIONS: Although CA treatment did lead to reduced levels of toxic C27 -bile acid intermediates in ZSD patients without severe liver fibrosis or cirrhosis, no improvement of clinically relevant parameters was observed after 21 months of treatment. We discuss the implications for CA therapy in ZSD based on these results.


Subject(s)
Cholic Acid/therapeutic use , Zellweger Syndrome/drug therapy , Administration, Oral , Adolescent , Adult , Bile Acids and Salts/metabolism , Biomarkers/blood , Child , Child, Preschool , Cholic Acid/blood , Female , Humans , Liver/metabolism , Liver Diseases/drug therapy , Liver Diseases/metabolism , Male , Peroxisomes/metabolism , Young Adult , Zellweger Syndrome/blood , Zellweger Syndrome/metabolism
10.
Orphanet J Rare Dis ; 14(1): 30, 2019 02 07.
Article in English | MEDLINE | ID: mdl-30732635

ABSTRACT

BACKGROUND: Over 80% of women with X-linked adrenoleukodystrophy (ALD) develop spinal cord disease in adulthood for which treatment is supportive only. For future clinical trials quantitative data on disease progression rates are essential. Moreover, diagnosis can be challenging in ALD women, as the most important diagnostic biomarker is normal in 15-20%. Better biomarkers are needed. The purpose of this single centre cross-sectional follow-up study in women with ALD was to assess whether Expanded Disability Status Scale (EDSS), AMC Linear Disability Scale (ALDS) and Short Form (36) Health Survey (SF-36) can detect disease progression and to model the effect of age and duration of symptoms on the rate of progression. Moreover, we performed a pilot study to assess if a semi-targeted lipidomics approach can identify possible new diagnostic biomarkers. RESULTS: In this study 46 women (baseline clinical data published by our group previously) were invited for a follow-up visit. Newly identified women at our center were also recruited. We analysed 65 baseline and 34 follow-up assessments. Median time between baseline and follow-up was 7.8 years (range 6.4-8.7). Mean age at baseline was 49.2 ± 14.2 years, at follow-up 55.4 ± 10.1. EDSS increased significantly (+ 0.08 points/year), but the other outcome measures did not. Increasing age and duration of symptoms were associated with more disability. For the pilot study we analysed plasma of 20 ALD women and 10 controls with ultra-high performance liquid chromatography coupled to high-resolution mass spectrometry, which identified 100 potential biomarker ratios with strong differentiating properties and non-overlapping data distributions between ALD women and controls. CONCLUSIONS: Progression of spinal cord disease can be detected with EDSS, but not with ALDS or SF-36 after a follow-up period of almost 8 years. Moreover, age and the duration of symptoms seem positively associated with the rate of progression. Although a significant progression was measurable, it was below the rate generally conceived as clinically relevant. Therefore, EDSS, ALDS and SF-36 are not suitable as primary outcome measures in clinical trials for spinal cord disease in ALD women. In addition, a semi-targeted lipidomics approach can identify possible new diagnostic biomarkers for women with ALD.


Subject(s)
Adrenoleukodystrophy/pathology , Adrenoleukodystrophy/blood , Adult , Biomarkers/blood , Computational Biology , Cross-Sectional Studies , Disease Progression , Female , Humans , Logistic Models , Middle Aged , Spinal Cord Diseases/pathology
12.
Eur J Hum Genet ; 26(12): 1752-1758, 2018 12.
Article in English | MEDLINE | ID: mdl-30089828

ABSTRACT

Pontocerebellar hypoplasia (PCH) is a heterogeneous neurodegenerative disorder with a prenatal onset. Using whole-exome sequencing, we identified variants in the gene Coenzyme A (CoA) synthase (COASY) gene, an enzyme essential in CoA synthesis, in four individuals from two families with PCH, prenatal onset microcephaly, and arthrogryposis. In family 1, compound heterozygous variants were identified in COASY: c.[1549_1550delAG]; [1486-3 C>G]. In family 2, all three affected siblings were homozygous for the c.1486-3 C>G variant. In both families, the variants segregated with the phenotype. RNA analysis showed that the c.1486-3 C>G variant leads to skipping of exon 7 with partial retention of intron 7, disturbing the reading frame and resulting in a premature stop codon (p.(Ala496Ilefs*20)). No CoA synthase protein was detected in patient cells by immunoblot analysis and CoA synthase activity was virtually absent. Partial CoA synthase defects were previously described as a cause of COASY Protein-Associated Neurodegeneration (CoPAN), a type of Neurodegeneration and Brain Iron Accumulation (NBIA). Here we demonstrate that near complete loss of function variants in COASY are associated with lethal PCH and arthrogryposis.


Subject(s)
Arthrogryposis/genetics , Cerebellar Diseases/genetics , Loss of Function Mutation , Microcephaly/genetics , Transferases/genetics , Aborted Fetus/abnormalities , Arthrogryposis/pathology , Cells, Cultured , Cerebellar Diseases/pathology , Humans , Infant, Newborn , Male , Microcephaly/pathology , Syndrome , Transferases/metabolism
13.
Orphanet J Rare Dis ; 13(1): 92, 2018 06 15.
Article in English | MEDLINE | ID: mdl-29903031

ABSTRACT

BACKGROUND: Pontocerebellar hypoplasia (PCH) describes a rare, heterogeneous group of neurodegenerative disorders mainly with a prenatal onset. Patients have severe hypoplasia or atrophy of cerebellum and pons, with variable involvement of supratentorial structures, motor and cognitive impairments. Based on distinct clinical features and genetic causes, current classification comprises 11 types of PCH. MAIN TEXT: In this review we describe the clinical, neuroradiological and genetic characteristics of the different PCH subtypes, summarize the differential diagnosis and reflect on potential disease mechanisms in PCH. Seventeen PCH-related genes are now listed in the OMIM database, most of them have a function in RNA processing or translation. It is unknown why defects in these apparently ubiquitous processes result in a brain-specific phenotype. CONCLUSIONS: Many new PCH related genes and phenotypes have been described due to the appliance of next generation sequencing techniques. By including such a broad range of phenotypes, including non-degenerative and postnatal onset disorders, the current classification gives rise to confusion. Despite the discovery of new pathways involved in PCH, treatment is still symptomatic. However, correct diagnosis of PCH is important to provide suitable care and counseling regarding prognosis, and offer appropriate (prenatal) genetic testing to families.


Subject(s)
Cerebellar Diseases/diagnosis , Cerebellar Diseases/genetics , Humans , Neurology , Phenotype
14.
J Inherit Metab Dis ; 41(5): 897-898, 2018 09.
Article in English | MEDLINE | ID: mdl-29464431

ABSTRACT

Mutations in the SEPSECS gene are associated with pontocerebellar hypoplasia type 2D. Pontocerebellar hypoplasia (PCH) is a heterogeneous group of rare autosomal recessive neurodegenerative disorders, mainly affecting pons and cerebellum. Patients have severe motor and cognitive impairments and often die during infancy. Here, we report a 23-year-old woman with slowly progressive cerebellar ataxia and cognitive impairment, in whom a homozygous missense mutation in the SEPSECS gene (c.1321G>A; p.Gly441Arg) was identified with whole exome sequencing. Our findings underline that defects in selenoprotein synthesis can also result in milder cerebellar atrophy presenting at a later age.


Subject(s)
Amino Acyl-tRNA Synthetases/genetics , Brain/pathology , Cerebellar Ataxia/etiology , Cerebellar Diseases/physiopathology , Microcephaly/etiology , Brain/diagnostic imaging , Cerebellar Diseases/genetics , Cognitive Dysfunction/etiology , Female , Homozygote , Humans , Magnetic Resonance Imaging , Mutation, Missense , Exome Sequencing , Young Adult
15.
JAMA Neurol ; 75(4): 495-502, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29356829

ABSTRACT

Importance: Ataxia with oculomotor apraxia type 1 (AOA1) is an autosomal recessive cerebellar ataxia due to mutations in the aprataxin gene (APTX) that is characterized by early-onset cerebellar ataxia, oculomotor apraxia, axonal motor neuropathy, and eventual decrease of albumin serum levels. Objectives: To improve the clinical, biomarker, and molecular delineation of AOA1 and provide genotype-phenotype correlations. Design, Setting, and Participants: This retrospective analysis included the clinical, biological (especially regarding biomarkers of the disease), electrophysiologic, imaging, and molecular data of all patients consecutively diagnosed with AOA1 in a single genetics laboratory from January 1, 2002, through December 31, 2014. Data were analyzed from January 1, 2015, through January 31, 2016. Main Outcomes and Measures: The clinical, biological, and molecular spectrum of AOA1 and genotype-phenotype correlations. Results: The diagnosis of AOA1 was confirmed in 80 patients (46 men [58%] and 34 women [42%]; mean [SD] age at onset, 7.7 [7.4] years) from 51 families, including 57 new (with 8 new mutations) and 23 previously described patients. Elevated levels of α-fetoprotein (AFP) were found in 33 patients (41%); hypoalbuminemia, in 50 (63%). Median AFP level was higher in patients with AOA1 (6.0 ng/mL; range, 1.1-17.0 ng/mL) than in patients without ataxia (3.4 ng/mL; range, 0.8-17.2 ng/mL; P < .01). Decreased albumin levels (ρ = -0.532) and elevated AFP levels (ρ = 0.637) were correlated with disease duration. The p.Trp279* mutation, initially reported as restricted to the Portuguese founder haplotype, was discovered in 53 patients with AOA1 (66%) with broad white racial origins. Oculomotor apraxia was found in 49 patients (61%); polyneuropathy, in 74 (93%); and cerebellar atrophy, in 78 (98%). Oculomotor apraxia correlated with the severity of ataxia and mutation type, being more frequent with deletion or truncating mutations (83%) than with presence of at least 1 missense variant (17%; P < .01). Mean (SD) age at onset was higher for patients with at least 1 missense mutation (17.7 [11.4] vs 5.2 [2.6] years; P < .001). Conclusions and Relevance: The AFP level, slightly elevated in a substantial fraction of patients, may constitute a new biomarker for AOA1. Oculomotor apraxia may be an optional finding in AOA1 and correlates with more severe disease. The p.Trp279* mutation is the most frequent APTX mutation in the white population. APTX missense mutations may be associated with a milder phenotype.


Subject(s)
Apraxias/congenital , Ataxia/genetics , Cogan Syndrome/genetics , DNA-Binding Proteins/genetics , Genetic Association Studies , Mutation/genetics , Nuclear Proteins/genetics , Adolescent , Adult , Apraxias/complications , Apraxias/diagnostic imaging , Apraxias/genetics , Ataxia/complications , Ataxia/diagnostic imaging , Cogan Syndrome/complications , Cogan Syndrome/diagnostic imaging , Disability Evaluation , Female , Humans , International Cooperation , Male , Middle Aged , Retrospective Studies , TRPC Cation Channels/genetics , Young Adult , alpha-Fetoproteins/metabolism
16.
Brain Imaging Behav ; 12(1): 29-43, 2018 02.
Article in English | MEDLINE | ID: mdl-28092022

ABSTRACT

This study aims to (1) investigate the neuropathology of mild to severe pediatric TBI and (2) elucidate the predictive value of conventional and innovative neuroimaging for functional outcome. Children aged 8-14 years with trauma control (TC) injury (n = 27) were compared to children with mild TBI and risk factors for complicated TBI (mildRF+, n = 20) or moderate/severe TBI (n = 17) at 2.8 years post-injury. Neuroimaging measures included: acute computed tomography (CT), volumetric analysis on post-acute conventional T1-weighted magnetic resonance imaging (MRI) and post-acute diffusion tensor imaging (DTI, analyzed using tract-based spatial statistics and voxel-wise regression). Functional outcome was measured using Common Data Elements for neurocognitive and behavioral functioning. The results show that intracranial pathology on acute CT-scans was more prevalent after moderate/severe TBI (65%) than after mildRF+ TBI (35%; p = .035), while both groups had decreased white matter volume on conventional MRI (ps ≤ .029, ds ≥ -0.74). The moderate/severe TBI group further showed decreased fractional anisotropy (FA) in a widespread cluster affecting all white matter tracts, in which regional associations with neurocognitive functioning were observed (FSIQ, Digit Span and RAVLT Encoding) that consistently involved the corpus callosum. FA had superior predictive value for functional outcome (i.e. intelligence, attention and working memory, encoding in verbal memory and internalizing problems) relative to acute CT-scanning (i.e. internalizing problems) and conventional MRI (no predictive value). We conclude that children with mildRF+ TBI and moderate/severe TBI are at risk of persistent white matter abnormality. Furthermore, DTI has superior predictive value for neurocognitive out-come relative to conventional neuroimaging.


Subject(s)
Adolescent Behavior , Brain Injuries, Traumatic/diagnostic imaging , Brain Injuries, Traumatic/psychology , Brain/diagnostic imaging , Child Behavior , Cognition , Adolescent , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/therapy , Child , Child Behavior Disorders/diagnostic imaging , Child Behavior Disorders/etiology , Cross-Sectional Studies , Diffusion Tensor Imaging , Female , Follow-Up Studies , Humans , Learning Disabilities/diagnostic imaging , Learning Disabilities/etiology , Magnetic Resonance Imaging , Male , Mental Disorders/diagnostic imaging , Mental Disorders/etiology , Neuroimaging , Prognosis , Tomography, X-Ray Computed , White Matter/diagnostic imaging , White Matter/injuries
18.
Cephalalgia ; 38(6): 1199-1202, 2018 05.
Article in English | MEDLINE | ID: mdl-28750589

ABSTRACT

Background Patients with hemiplegic migraine (HM) may sometimes develop progressive neurological deterioration of which the pathophysiology is unknown. Patient We report a 16-year clinical and neuroradiological follow-up of a patient carrying a de novo p.Ser218Leu CACNA1A HM mutation who had nine severe HM attacks associated with seizures and decreased consciousness between the ages of 3 and 12 years. Results Repeated ictal and postictal neuroimaging revealed cytotoxic oedema during severe HM attacks in the symptomatic hemisphere, which later showed atrophic changes. In addition, progressive cerebellar atrophy was observed. Brain atrophy halted after cessation of severe attacks, possibly due to prophylactic treatment with flunarizine and sodium valproate. Conclusion Severe HM attacks may result in brain atrophy and prophylactic treatment of these attacks might be needed in an early stage of disease to prevent permanent brain damage.


Subject(s)
Brain Diseases/etiology , Brain Diseases/pathology , Brain/pathology , Migraine with Aura/pathology , Adolescent , Atrophy/etiology , Atrophy/pathology , Calcium Channels/genetics , Child , Child, Preschool , Female , Humans , Migraine with Aura/complications , Migraine with Aura/genetics , Mutation , Young Adult
19.
JIMD Rep ; 39: 83-87, 2018.
Article in English | MEDLINE | ID: mdl-28755360

ABSTRACT

We report the major diagnostic challenge in a female patient with signs and symptoms suggestive of an early-onset mitochondrial encephalopathy. Motor and cognitive development was severely delayed and brain MRI showed signal abnormalities in the putamen and caudate nuclei. Metabolic abnormalities included 3-methylglutaconic aciduria and elevated lactate levels in plasma and cerebrospinal fluid, but were transient. Whole exome sequencing at the age of 25 years finally revealed compound heterozygous mutations c.[229G>C];[563C>T], p.[Glu77Gln];[Ala188Val] in the ECHS1 gene. Activity of short-chain enoyl-CoA hydratase, a mitochondrial enzyme encoded by the ECHS1 gene, was markedly decreased in lymphocytes. Retrospective urine analysis confirms that elevated levels of S-(2-carboxypropyl)cysteamine, S-(2-carboxypropyl)cysteine, and N-acetyl-S-(2-carboxypropyl)cysteine can be a diagnostic clue in the disease spectrum of ECHS1 mutations.

20.
J Inherit Metab Dis ; 41(2): 249-255, 2018 03.
Article in English | MEDLINE | ID: mdl-29139025

ABSTRACT

INTRODUCTION: Zellweger spectrum disorders (ZSDs) are caused by an impairment of peroxisome biogenesis, resulting in multiple metabolic abnormalities. This leads to a range of symptoms, including hepatic dysfunction and coagulopathy. This study evaluated the incidence and severity of coagulopathy and the effect of vitamin K supplementation orally and IV in ZSD. METHODS: Data were retrospectively retrieved from the medical records of 30 ZSD patients to study coagulopathy and the effect of vitamin K orally on proteins induced by vitamin K absence (PIVKA-II) levels. Five patients from the cohort with a prolonged prothrombin time, low factor VII, and elevated PIVKA-II levels received 10 mg of vitamin K IV. Laboratory results, including thrombin generation, at baseline and 72 h after vitamin K administration were examined. RESULTS: In the retrospective cohort, four patients (13.3%) experienced intracranial bleedings and 14 (46.7%) reported minor bleeding. No thrombotic events occurred. PIVKA-II levels decreased 38% after start of vitamin K therapy orally. In the five patients with a coagulopathy, despite treatment with oral administration of vitamin K, vitamin K IV caused an additional decrease (23%) of PIVKA-II levels and increased thrombin generation. CONCLUSION: Bleeding complications frequently occur in ZSD patients due to liver disease and vitamin K deficiency. Vitamin K deficiency is partly corrected by vitamin K supplementation orally, and vitamin K administered IV additionally improves vitamin K status, as shown by further decrease of PIVKA-II and improved thrombin generation.


Subject(s)
Blood Coagulation Disorders/drug therapy , Blood Coagulation/drug effects , Dietary Supplements , Hemorrhage/drug therapy , Vitamin K Deficiency/drug therapy , Vitamin K/administration & dosage , Zellweger Syndrome/drug therapy , Administration, Intravenous , Administration, Oral , Adolescent , Biomarkers/blood , Blood Coagulation Disorders/blood , Blood Coagulation Disorders/diagnosis , Blood Coagulation Disorders/epidemiology , Child , Female , Hemorrhage/blood , Hemorrhage/diagnosis , Hemorrhage/epidemiology , Humans , Incidence , Male , Netherlands/epidemiology , Pilot Projects , Proof of Concept Study , Prospective Studies , Protein Precursors/blood , Prothrombin , Retrospective Studies , Severity of Illness Index , Treatment Outcome , Vitamin K Deficiency/blood , Vitamin K Deficiency/diagnosis , Vitamin K Deficiency/epidemiology , Young Adult , Zellweger Syndrome/blood , Zellweger Syndrome/diagnosis , Zellweger Syndrome/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...