Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 17(10)2017 Oct 21.
Article in English | MEDLINE | ID: mdl-29065478

ABSTRACT

Catalytic substrate, which is devoid of expensive noble metals and enzymes for hydrogen peroxide (H2O2), reduction reactions can be obtained via nitrogen doping of graphite. Here, we report a facile fabrication method for obtaining such nitrogen doped graphitized carbon using polyacrylonitrile (PAN) mats and its use in H2O2 sensing. A high degree of graphitization was obtained with a mechanical treatment of the PAN fibers embedded with carbon nanotubes (CNT) prior to the pyrolysis step. The electrochemical testing showed a limit of detection (LOD) 0.609 µM and sensitivity of 2.54 µA cm-2 mM-1. The promising sensing performance of the developed carbon electrodes can be attributed to the presence of high content of pyridinic and graphitic nitrogens in the pyrolytic carbons, as confirmed by X-ray photoelectron spectroscopy. The reported results suggest that, despite their simple fabrication, the hydrogen peroxide sensors developed from pyrolytic carbon nanofibers are comparable with their sophisticated nitrogen-doped graphene counterparts.

SELECTION OF CITATIONS
SEARCH DETAIL
...