Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 12071, 2024 05 27.
Article in English | MEDLINE | ID: mdl-38802675

ABSTRACT

The fourth phase of water has garnered increased attention within the scientific community due to its distinct properties that differentiate it from regular water. This unique state seems to arise potentially from a liquid crystalline structure, which has been observed near various hydrophilic surfaces to possess the capability of excluding microspheres. Consequently, it has been labeled as exclusion zone (EZ) water. When in contact with hydrophilic surfaces, water could exhibit the ability to form organized layers of EZ water. In this study, we investigated the quick buildup of EZ water exposed to xylem vessels of four vegetable plants: cabbage, celery, asparagus, and pumpkin. Among them, pumpkin vessels showed larger EZs, up to 240 ± 56 µm in width. The width of EZ water found near the xylem vessels of the other plants ranged from 133 ± 22 to 142 ± 20 µm. EZ water generally excludes a wide range of particles, including polystyrene microspheres with various surface modifications, as well as silica microspheres. This implies that the formation of EZ water is not an artificial result of using specific microsphere types but rather demonstrates EZ's ability to exclude particles regardless of their composition. Inside single xylem vessels of the pumpkin, we could observe the dynamics of EZ buildup, growing from the inside edge of the vessel toward the center. The relationship between vessel diameter, vessel length, and salt concentration on EZ generation inside the xylem vessel was also explored. The results showed that EZ water can build up both inside and outside the xylem vessels. Our findings suggest that EZ generation inside xylem vessels is associated with water flow, likely driven by a proton gradient. Further research is warranted to elucidate the role of EZ water in the physiology of living plants, particularly considering the limitations of the current experiments conducted on cut-out xylem vessel samples.


Subject(s)
Water , Xylem , Xylem/metabolism , Water/metabolism , Hydrophobic and Hydrophilic Interactions
2.
PLoS One ; 18(10): e0289652, 2023.
Article in English | MEDLINE | ID: mdl-37856567

ABSTRACT

The heart is widely acknowledged as the unique driver of blood circulation. Recently, we discovered a flow-driving mechanism that can operate without imposed pressure, using infrared (IR) energy to propel flow. We considered the possibility that, by exploiting this mechanism, blood vessels, themselves, could propel flow. We verified the existence of this driving mechanism by using a three-day-old chick-embryo model. When the heart was stopped, blood continued to flow for approximately 50 minutes, albeit at a lower velocity. When IR was introduced, the postmortem flow increased from ~41.1 ± 25.6 µm/s to ~153.0 ± 59.5 µm/s (n = 6). When IR energy was diminished under otherwise physiological conditions, blood failed to flow. Hence, this IR-dependent, vessel-based flow-driving mechanism may indeed operate in the circulatory system, complementing the action of the heart.


Subject(s)
Cardiovascular System , Heart , Heart/physiology , Hemodynamics , Blood Flow Velocity/physiology , Blood Circulation , Blood Pressure
3.
PLoS One ; 17(10): e0275953, 2022.
Article in English | MEDLINE | ID: mdl-36301987

ABSTRACT

Solutions with high pH values are sometimes thought to contain net negative charge because of an excess of OH- groups, while solutions with low pH values are thought opposite. To follow up on these speculations, we used a simple electrochemical cell to study three types of solution: electrolyzed waters with differing pH values; acids and bases with different pH values; and various salt solutions. When electrolyzed waters of various pH values were tested against water of pH 7, we found that acidic waters were indeed positively charged, while basic waters were negatively charged. We found much the same when standard acids and bases were compared to reference solutions: acidic solutions were positively charged while basic solutions were negatively charged. Various salts, including NaCl, KCl, Na2SO4, and K2SO4, were also tested against DI water (containing trace amounts of NaCl to lend conductivity). Surprisingly, all salts were found to be negatively charged, more so as their concentrations increased. This collection of results supports the hypothesis that at least some aqueous solutions may contain net charge.


Subject(s)
Salts , Sodium Chloride , Water , Acids , Electric Conductivity , Solutions
4.
PLoS One ; 17(5): e0268747, 2022.
Article in English | MEDLINE | ID: mdl-35622780

ABSTRACT

Hydrophilic materials immersed in aqueous solutions show near-surface zones that exclude suspended colloids and dissolved molecules. These exclusion zones (EZs) can extend for tens to hundreds of micrometers from hydrophilic surfaces and show physicochemical properties that differ from bulk water. Here we report that exposure of standard aqueous microsphere suspensions to static magnetic fields creates similar microsphere-free zones adjacent to magnetic poles. The EZs build next to both north and south poles; and they build whether the microspheres are of polystyrene or carboxylate composition. EZ formation is accompanied by ordered motions of microspheres, creating dense zones some distance from the magnetic poles and leaving microsphere-free zones adjacent to the magnet. EZ size was larger next to the north pole than the south pole. The difference was statistically significant when polystyrene microspheres were used, although not when carboxylate microspheres were used. In many ways, including both size and dynamics, these exclusion zones resemble those found earlier next to various hydrophilic surfaces. The ability to create EZs represents a feature of magnets not previously revealed.


Subject(s)
Polystyrenes , Water , Hydrophobic and Hydrophilic Interactions , Magnetic Fields , Microspheres , Water/chemistry
5.
PLoS One ; 16(12): e0260967, 2021.
Article in English | MEDLINE | ID: mdl-34855917

ABSTRACT

Low frequency electric fields were exposed to various water samples using platinum electrodes mounted near the water surface. Responses were monitored using a spectro-radiometer and a contact-angle goniometer. Treatment of DI (deionized), EZ (Exclusion Zone), and bulk water with certain electromagnetic frequencies resulted in a drop of radiance persisting for at least half an hour. Compared to DI water, however, samples of EZ and bulk water showed lesser radiance drop. Contact-angle goniometric results confirmed that when treated with alternating electric fields (E = 600 ± 150 V/m, f = 7.8 and 1000 Hz), droplets of EZ and bulk water acquired different charges. The applied electric field interacted with EZ water only when electrodes were installed above the chamber, but not beneath. Further, when DI water interacted with an electric field applied from above (E = 600 ± 150 V/m, f = 75 Hz), its radiance profile became similar to that of EZ water. Putting these last two findings together, one can say that application of an electric field on DI water from above (E = 600 ± 150 V/m, f = 7.8 to 75 Hz) may induce a molecular ordering in DI water similar to that of EZ water.


Subject(s)
Electricity , Electrodes , Electromagnetic Fields , Platinum/chemistry , Water/chemistry , Water/analysis
6.
ACS Omega ; 5(33): 21024-21031, 2020 Aug 25.
Article in English | MEDLINE | ID: mdl-32875239

ABSTRACT

The ionic compositions of the intra- and extracellular environments are distinct from one another, with K+ being the main cation in the cytosol and Na+ being the most abundant cation outside of the cell. Specific ions can permeate into and out of the cell at different rates, bringing about uneven distribution of charges and development of negative electric potential inside the cell. Each healthy cell must maintain a specific ion concentration gradient and voltage. To account for these functions, various ionic pumps and channels located within the cell membrane have been invoked. In this work, we use a porous alginate hydrogel as a model gelatinous network representing the plant cell wall or cytoskeleton of the animal cell. We show that the gel barrier is able to maintain a stable separation of ionic solutions of different ionic strengths and chemical compositions without any pumping activity. For the Na+/K+ concentration gradient sustained across the barrier, a negative electric potential develops within the K+-rich side. The situation is reminiscent of that in the cell. Furthermore, also the advective flow of water molecules across the gel barrier is restricted, despite the gel's large pores and the osmotic or hydrostatic pressure gradients across it. This feature has important implications for osmoregulation. We propose a mechanism in which charge separation and electric fields developing across the permselective (gel) membrane prevent ion and bulk fluid flows ordinarily driven by chemical and pressure gradients.

7.
Colloid Interface Sci Commun ; 38: 100307, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32864353

ABSTRACT

Propolis is a natural product originating from life activity of honeybees. It exhibits wide range of biological properties applicable in medicine, the food industry, and cosmetics. Chemically, propolis is a complex and variable mixture with more than 300 identified biologically active components. Propolis's many health-promoting effects are attributed to different biochemical mechanisms, mediated by often-concerted actions of some of its many constituents. Propolis is considered safe and biocompatible. Yet due to its intrinsic complexity, standardization of propolis preparations for medical use as well as prediction of e.g. pathogen-specific interactions becomes a non-trivial task. In this work we demonstrate a new physical mechanism of propolis action, largely independent of specific nuances of propolis chemistry, which may underlie some of its biological actions. We show that propolis-bearing surfaces generate an extensive exclusion zone (EZ) water layer. EZ is an interfacial region of water capable of excluding solutes ranging from ions to microorganisms. Propolis-generated EZ may constitute an effective barrier, physically disabling the approach of various pathogens to the propolis-functionalized surfaces. We suggest possible implications of this new mechanism for propolis-based prevention of respiratory infections.

8.
Sci Adv ; 6(19): eaba0941, 2020 May.
Article in English | MEDLINE | ID: mdl-32494720

ABSTRACT

Fluid commonly flows in response to an external pressure gradient. However, when a tunnel-containing hydrogel is immersed in water, spontaneous flow occurs through the tunnel without any pressure gradient. We confirmed this flow in a wide range of plant- and animal-derived hydrogels. The flow appears to be driven by axial concentration gradients originating from surface activities of the tunnel wall. Those activities include (i) hydrogel-water interaction and (ii) material exchange across the tunnel boundary. Unlike pressure-driven flow, this surface-induced flow has two distinct features: incident infrared energy substantially increases flow velocity, and narrower tunnels generate faster flow. Thus, surface activities in hydrogel-lined tunnels may confer kinetic energy on the enclosed fluid, with infrared as an energy source.

9.
Food Chem ; 316: 126305, 2020 Jun 30.
Article in English | MEDLINE | ID: mdl-32066069

ABSTRACT

A fourth phase of water, labeled exclusion-zone or "EZ," extends from hydrophilic surfaces. Salient features include exclusion of colloidal and molecular solutes, and characteristic light absorbance at 270 nm. In cell systems, EZ water interfaces with membranes, macromolecules, and organelles, and its buildup appears to be vital for function. For years thought to build health, fats have gained a negative reputation over the last few decades. While their exact role in health remains unclear, now they have become more accepted. We tested several fats for their capacity to generate EZ water. Large EZs formed next to ghee, coconut oil, lard, organic clarified butter, and 'Brain Octane®' oil. Cold ghee surfaces produced especially large EZs. Thus, EZ growth, confirmed by microsphere exclusion and UV-VIS absorbance spectroscopy of samples flanking the fat, may be an important factor in cellular hydration and might well underlie the health-promoting function of fats.


Subject(s)
Fats/chemistry , Brain , Brain Chemistry , Hydrophobic and Hydrophilic Interactions , Temperature , Water/chemistry
10.
J Phys Chem B ; 123(51): 11003-11013, 2019 12 26.
Article in English | MEDLINE | ID: mdl-31808695

ABSTRACT

One of the characteristics of aqueous interfaces is their negative charge, whose origin is still a subject of scientific debate. In this work, we provide spectroscopic evidence that bicarbonate anions, from dissolution of atmospheric CO2, can be a source of negative charge at the air-water and/or solid-water interface. Also, interfacial charge separation, with a negatively charged droplet rim and positive charges gathering more toward the interior, makes water droplets receptive systems. We found that these droplets move in a controlled fashion because of electrostatic forces acting between droplets and a solid support possessing a static electric charge. A trigger used to induce droplets' motion is IR emitted by different common objects. We interpret IR action as resulting from its ability to enhance the negative charge of the interfacial water. Droplets that leave negatively charged residues adsorbed to the solid, therefore acquiring a net positive charge, can defy the force of gravity and jump off the charged surface instead of falling, as observed in our experiments. Insights obtained from infrared emission of water agree with the possibility of excess protons residing in droplets after their contact with the solid. Our results show that (i) aqueous interfaces in contact with CO2 gas from the atmosphere (or possibly from cellular respiration inside of the organisms) acquire a negative surface charge, and (ii) infrared energy, abundant externally from the sun and internally from metabolic heat, can impact this process.

11.
Biofouling ; 35(7): 732-741, 2019 08.
Article in English | MEDLINE | ID: mdl-31468985

ABSTRACT

Silk sericin is a globular protein whose resistance against fouling is important for applications in biomaterials and water-purification membranes. Here it is shown how sericin generates a water-exclusion zone that may facilitate antifouling behavior. Negatively charged microspheres were used to mimic the surface charge and hydrophobic domains in bacteria. Immersed in water, regenerated silk sericin formed a 100-µm-sized exclusion zone (for micron-size foulants), along with a proton gradient with a decrease of >2 pH-units. Thus, when in contact with sericin, water molecules near the surface restructure to form a physical exclusionary barrier that might prevent biofouling. The decreased pH turns the aqueous medium unviable for neutrophilic bacteria. Therefore, resistance to biofouling seems explainable, among other factors, on the basis of water-exclusionary phenomena. Furthermore, sericin may play a role in triggering the fibroin assembly process by lowering the pH to the required value.


Subject(s)
Biofouling , Sericins/chemistry , Animals , Bombyx , Water/chemistry
12.
Dose Response ; 16(3): 1559325818796937, 2018.
Article in English | MEDLINE | ID: mdl-30202249

ABSTRACT

It is now well-confirmed that hydrophilic surfaces including those within the cell generate structural changes in water. This interfacial water is ordered and acquires features different from the bulk. Amongst those features is the exclusion of colloidal and molecular solutes from extensive regions next to the hydrophilic surface, thereby earning it the label of "exclusion zone" (EZ) water. The transition of ordered EZ water to bulk serves as an important trigger of many cellular physiological functions, and in turn cellular health. We tested physiological doses of half a dozen agents generally identified to restore or build health on the extent to which they build EZs. All agents known to enhance biological function resulted in EZ expansion. On the other hand, the weed killer, glyphosate, considerably diminished EZ size. While the expansion effect of the health-promoting agents was observed over a wide range of concentrations, excessive doses ultimately reduced EZ size. We hypothesize that EZ buildup may be a mechanistic feature underlying many health-promoting agents, while agents that impair health may act by diminishing the amount of EZ water.

13.
J Phys Chem B ; 122(31): 7711-7717, 2018 08 09.
Article in English | MEDLINE | ID: mdl-29996049

ABSTRACT

Flow of electrical current through water is expected to increase water temperature. We passed low-frequency alternating electric current through distilled, deionized water using platinum electrodes and found, instead, a diminution of temperature. The diminution was observed using both an infrared camera and a spectroradiometer, the latter allowing us to obtain spectral information. The diminished temperature persisted for at least half an hour following cessation of the current flow. Diminished radiant energy implies reduced charge displacements, which in turn implies increased structural order. Hence, the passage of charge into water appears to increase the water structure.

14.
PLoS One ; 13(4): e0195057, 2018.
Article in English | MEDLINE | ID: mdl-29668733

ABSTRACT

Earlier studies have reported the formation of an exclusion zone devoid of microspheres at the interface of water with a hydrophilic surface such as Nafion® or the hydrophilic ceramic powder. We now report the formation of a 'three-dimensional cell-like structured exclusion zone' in water prepared by two different methods. In the first, the hydrophilic powder was agitated with deionized water and allowed to rest (contact method). Subsequently, the 'powder-supernatant water' was collected and termed 'contact water'. In the second method, deionized water in a closed container was kept in the close vicinity of the hydrophilic powder for an extended time-period and it was termed 'non-contact water'. The two kinds of waters were tested by standard methods for various physical properties. In addition, we carried out cryogenic scanning-electron microscopy of frozen samples of the two kinds of water. The powder-supernatant water showed a cell-like heterogeneous ice structure with the high-density exclusion-zone water forming the walls of a cell-like structure. A similar cell-like ice structure was formed for water treated with the hydrophilic powder in a non-contact manner; the unit cell size depended on the 'degree of structure' in the water. When highly structured, the unit cell size was smaller with a concurrently enhanced dielectric constant and reduced redox potential. It was found that the electrical properties are more sensitive to the change in water structure compared to other physical properties such as surface tension, density, and specific heat. Based on our findings of an electric potential difference between the heterogeneous structured water and the ordinary water, we propose a new model to explain the relationship between heterogeneous, structured water and its electrical properties.


Subject(s)
Temperature , Water/chemistry , Hydrophobic and Hydrophilic Interactions , Ice/analysis , Oxidation-Reduction , Surface Properties
15.
Langmuir ; 33(22): 5585-5591, 2017 06 06.
Article in English | MEDLINE | ID: mdl-28506064

ABSTRACT

The surface of ice plays a significant role in melting. To better understand the role of the surface, we studied the melting of ice using infrared imaging and pH-sensitive dyes. Ice was allowed to melt in baths of water of varying depths. When the ice melted in a high level of room-temperature water, equal to the height of the ice, the conventional melting pattern appeared. When the ice melted in a chamber with a lower water level, the melting pattern was unexpected. Seconds after the ice was placed in the water, localized regions of low-temperature water appeared around the perimeter of the ice. These regions grew radially outward and seemed to originate as streams coming from inside the ice. Those streams contained high concentrations of protons, as indicated by the color change of a pH-sensitive dye initially placed in the water surrounding the ice. This observation, together with the temperature distribution and ice-shape changes during melting implied that the streams may be propelled by protons from inside the ice. In contrast to conventional melting, which progresses from the outer surface inward, the stream-melting pattern implies a melting process originating inside the ice.

16.
Gels ; 3(4)2017 Nov 15.
Article in English | MEDLINE | ID: mdl-30920538

ABSTRACT

Hydrogels contain ample amounts of water, with the water-to-solid ratio sometimes reaching tens of thousands of times. How can so much water remain securely lodged within the gel? New findings imply a simple mechanism. Next to hydrophilic surfaces, water transitions into an extensive gel-like phase in which molecules become ordered. This "fourth phase" of water sticks securely to the solid gel matrix, ensuring that the water does not leak out.

17.
PLoS One ; 11(4): e0152127, 2016.
Article in English | MEDLINE | ID: mdl-27054588

ABSTRACT

BACKGROUND: Water undergoes structural change as it interfaces with hydrophilic surfaces, including the many hydrophilic surfaces within the cell. This interfacial water has become known as "Exclusion Zone (EZ) water" or "fourth-phase water" [1]. METHODS: We tested the hypothesis that anesthetics diminish the amount of EZ water, and that this change may correlate with functional changes in anesthesia. By using the local anesthetics Lidocaine and Bupivacaine as well as a general inhalational anesthetic, Isoflurane, we tracked the EZ size as these anesthetics were introduced. RESULTS: All three anesthetics diminished EZ size in a concentration-dependent manner at concentrations of 0.18 mM and greater for Bupivacaine, 0.85 mM and greater for Lidocaine, and 0.2% for Isoflurane. At extremely low (micromolar) concentrations, however, all three anesthetics increased EZ size. CONCLUSIONS: The sharp increase of EZ size associated with micromolar anesthetic concentrations follows a similar pattern to induction of general anesthesia, from the excitation stage (Stage II) to the depression and overdose stages of surgical anesthesia (Stages III and IV). The results are consistent with the hypothesis that anesthetics may act on water, a fundamental organizational component common to all cells.


Subject(s)
Anesthetics, Inhalation/chemistry , Anesthetics, Local/chemistry , Bupivacaine/chemistry , Isoflurane/chemistry , Lidocaine/chemistry , Water/chemistry
18.
Langmuir ; 31(38): 10370-6, 2015 Sep 29.
Article in English | MEDLINE | ID: mdl-26335979

ABSTRACT

Colloidal particles in aqueous suspension generally sediment uniformly. By contrast, we found that suspensions of latex microspheres in polystyrene Petri dishes deviated sharply from the expected pattern when various objects were positioned immediately outside those dishes. When small coin-like metal discs were positioned immediately beneath the Petri dish, the microspheres sedimented to a point just above those discs. Other materials, including glass and wood, produced similar results, though less pronounced. After the microspheres had sedimented, shifting the metal to another position beneath the dish caused the microspheres to follow. Various control experiments ruled out trivial explanations. In concordance with earlier results, it appears that the infrared energy generated by the various materials draws microspheres, resulting in the unusual sedimentation patterns. The results have significant implications for the mechanism of sedimentation, particularly for the role of charge in that process.


Subject(s)
Infrared Rays , Latex/chemistry , Latex/radiation effects , Water/chemistry , Colloids , Microspheres , Surface Properties , Suspensions
19.
Undersea Hyperb Med ; 42(3): 257-64, 2015.
Article in English | MEDLINE | ID: mdl-26152107

ABSTRACT

Hyperbaric oxygen (HBO2) conditions are applied clinically to treat diverse conditions. There is a lack of a unifying consensus as to how HBO2 acts effectively against a broad range of medical conditions, and numerous differing biological explanations have been offered. The possibility of a mechanism dependent on the extensive ordering of interfacial water has not yet been investigated. We examined the hypothesis that zones of ordered water, dubbed "exclusion zones" or "EZ," are expanded under hyperbaric oxygen conditions. Specifically, we tested whether there are significant quantitative differences in EZ size at steady state under high-pressure and/or high-oxygen conditions, compared to normal atmospheric conditions. Oxygen concentration and mechanical pressure were examined separately and in combination. Statistically significant increases in EZ size were seen at elevated air pressures and at high oxygen concentrations. These experimental results suggest the possibility of an ordered water-mediated mechanism of action for hyperbaric oxygen therapy.


Subject(s)
Body Water/chemistry , Consensus , Hyperbaric Oxygenation , Osmotic Pressure , Oxygen , Air Pressure , Humans , Microspheres , Nitrogen , Osmotic Pressure/physiology , Partial Pressure
SELECTION OF CITATIONS
SEARCH DETAIL
...