Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 96
Filter
Add more filters










Publication year range
1.
Mol Biol Cell ; 35(7): mr4, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38717434

ABSTRACT

Cryogenic electron tomography (cryo-ET) is the highest resolution imaging technique applicable to the life sciences, enabling subnanometer visualization of specimens preserved in their near native states. The rapid plunge freezing process used to prepare samples lends itself to time-resolved studies, which researchers have pursued for in vitro samples for decades. Here, we focus on developing a freezing apparatus for time-resolved studies in situ. The device mixes cellular samples with solution-phase stimulants before spraying them directly onto an electron microscopy grid that is transiting into cryogenic liquid ethane. By varying the flow rates of cell and stimulant solutions within the device, we can control the reaction time from tens of milliseconds to over a second before freezing. In a proof-of-principle demonstration, the freezing method is applied to a model bacterium, Caulobacter crescentus, mixed with an acidic buffer. Through cryo-ET we resolved structural changes throughout the cell, including surface-layer protein dissolution, outer membrane deformation, and cytosolic rearrangement, all within 1.5 s of reaction time. This new approach, Time-Resolved cryo-ET (TR-cryo-ET), enhances the capabilities of cryo-ET by incorporating a subsecond temporal axis and enables the visualization of induced structural changes at the molecular, organelle, or cellular level.


Subject(s)
Caulobacter crescentus , Cryoelectron Microscopy , Electron Microscope Tomography , Electron Microscope Tomography/methods , Cryoelectron Microscopy/methods , Caulobacter crescentus/ultrastructure , Caulobacter crescentus/metabolism , Caulobacter crescentus/physiology , Freezing
2.
bioRxiv ; 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38370687

ABSTRACT

Transglutaminase 2 (TG2) is a GTP-binding/protein-crosslinking enzyme that has been investigated as a therapeutic target for Celiac disease, neurological disorders, and aggressive cancers. TG2 has been suggested to adopt two conformational states that regulate its functions: a GTP-bound, closed conformation, and a calcium-bound, crosslinking-active open conformation. TG2 mutants that constitutively adopt an open conformation are cytotoxic to cancer cells. Thus, small molecules that maintain the open conformation of TG2 could offer a new therapeutic strategy. Here, we investigate TG2, using static and time-resolved small-angle X-ray scattering (SAXS) and single-particle cryoelectron microscopy (cryo-EM), to determine the conformational states responsible for conferring its biological effects. We also describe a newly developed TG2 inhibitor, LM11, that potently kills glioblastoma cells and use SAXS to investigate how LM11 affects the conformational states of TG2. Using SAXS and cryo-EM, we show that guanine nucleotide-bound TG2 adopts a monomeric closed conformation while calcium-bound TG2 assumes an open conformational state that can form higher order oligomers. SAXS analysis also suggests how a TG2 mutant that constitutively adopts the open state binds nucleotides through an alternative mechanism to wildtype TG2. Furthermore, we use time-resolved SAXS to show that LM11 increases the ability of calcium to drive TG2 to an open conformation, which is not reversible by guanine nucleotides and is cytotoxic to cancer cells. Taken together, our findings demonstrate that the conformational dynamics of TG2 are more complex than previously suggested and highlight how conformational stabilization of TG2 by LM11 maintains TG2 in a cytotoxic conformational state.

3.
bioRxiv ; 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37961637

ABSTRACT

Poly(ADP-ribose) (PAR), as part of a post-translational modification, serves as a flexible scaffold for noncovalent protein binding. Such binding is influenced by PAR chain length through a mechanism yet to be elucidated. Structural insights have been elusive, partly due to the difficulties associated with synthesizing PAR chains of defined lengths. Here, we employ an integrated approach combining molecular dynamics (MD) simulations with small-angle X-ray scattering (SAXS) experiments, enabling us to identify highly heterogeneous ensembles of PAR conformers at two different, physiologically relevant lengths: PAR 15 and PAR 22 . Our findings reveal that numerous factors including backbone conformation, base stacking, and chain length contribute to determining the structural ensembles. We also observe length-dependent compaction of PAR upon the addition of small amounts of Mg 2+ ions, with the 22-mer exhibiting ADP-ribose bundles formed through local intramolecular coil-to-globule transitions. This study illuminates how such bundling could be instrumental in deciphering the length-dependent action of PAR.

4.
Nucleic Acids Res ; 51(20): 11332-11344, 2023 11 10.
Article in English | MEDLINE | ID: mdl-37819014

ABSTRACT

SARS-CoV-2 depends on -1 programmed ribosomal frameshifting (-1 PRF) to express proteins essential for its replication. The RNA pseudoknot stimulating -1 PRF is thus an attractive drug target. However, the structural models of this pseudoknot obtained from cryo-EM and crystallography differ in some important features, leaving the pseudoknot structure unclear. We measured the solution structure of the pseudoknot using small-angle X-ray scattering (SAXS). The measured profile did not agree with profiles computed from the previously solved structures. Beginning with each of these solved structures, we used the SAXS data to direct all atom molecular dynamics (MD) simulations to improve the agreement in profiles. In all cases, this refinement resulted in a bent conformation that more closely resembled the cryo-EM structures than the crystal structure. Applying the same approach to a point mutant abolishing -1 PRF revealed a notably more bent structure with reoriented helices. This work clarifies the dynamic structures of the SARS-CoV-2 pseudoknot in solution.


Subject(s)
Molecular Dynamics Simulation , RNA, Viral , SARS-CoV-2 , Humans , COVID-19/virology , Frameshifting, Ribosomal , Nucleic Acid Conformation , RNA, Viral/chemistry , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Scattering, Small Angle , X-Ray Diffraction
5.
Nat Commun ; 14(1): 5507, 2023 09 07.
Article in English | MEDLINE | ID: mdl-37679343

ABSTRACT

For decades, researchers have elucidated essential enzymatic functions on the atomic length scale by tracing atomic positions in real-time. Our work builds on possibilities unleashed by mix-and-inject serial crystallography (MISC) at X-ray free electron laser facilities. In this approach, enzymatic reactions are triggered by mixing substrate or ligand solutions with enzyme microcrystals. Here, we report in atomic detail (between 2.2 and 2.7 Å resolution) by room-temperature, time-resolved crystallography with millisecond time-resolution (with timepoints between 3 ms and 700 ms) how the Mycobacterium tuberculosis enzyme BlaC is inhibited by sulbactam (SUB). Our results reveal ligand binding heterogeneity, ligand gating, cooperativity, induced fit, and conformational selection all from the same set of MISC data, detailing how SUB approaches the catalytic clefts and binds to the enzyme noncovalently before reacting to a trans-enamine. This was made possible in part by the application of singular value decomposition to the MISC data using a program that remains functional even if unit cell parameters change up to 3 Å during the reaction.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Ligands , Sulbactam/pharmacology , beta-Lactamases
6.
Sci Adv ; 9(39): eadj3509, 2023 09 29.
Article in English | MEDLINE | ID: mdl-37756398

ABSTRACT

RNA macromolecules, like proteins, fold to assume shapes that are intimately connected to their broadly recognized biological functions; however, because of their high charge and dynamic nature, RNA structures are far more challenging to determine. We introduce an approach that exploits the high brilliance of x-ray free-electron laser sources to reveal the formation and ready identification of angstrom-scale features in structured and unstructured RNAs. Previously unrecognized structural signatures of RNA secondary and tertiary structures are identified through wide-angle solution scattering experiments. With millisecond time resolution, we observe an RNA fold from a dynamically varying single strand through a base-paired intermediate to assume a triple-helix conformation. While the backbone orchestrates the folding, the final structure is locked in by base stacking. This method may help to rapidly characterize and identify structural elements in nucleic acids in both equilibrium and time-resolved experiments.


Subject(s)
Nucleic Acids , RNA , Electrons , Lasers
7.
bioRxiv ; 2023 May 24.
Article in English | MEDLINE | ID: mdl-37292849

ABSTRACT

RNA macromolecules, like proteins, fold to assume shapes that are intimately connected to their broadly recognized biological functions; however, because of their high charge and dynamic nature, RNA structures are far more challenging to determine. We introduce an approach that exploits the high brilliance of x-ray free electron laser sources to reveal the formation and ready identification of Å scale features in structured and unstructured RNAs. New structural signatures of RNA secondary and tertiary structures are identified through wide angle solution scattering experiments. With millisecond time resolution, we observe an RNA fold from a dynamically varying single strand through a base paired intermediate to assume a triple helix conformation. While the backbone orchestrates the folding, the final structure is locked in by base stacking. In addition to understanding how RNA triplexes form and thereby function as dynamic signaling elements, this new method can vastly increase the rate of structure determination for these biologically essential, but mostly uncharacterized macromolecules.

8.
IUCrJ ; 10(Pt 3): 363-375, 2023 05 01.
Article in English | MEDLINE | ID: mdl-37144817

ABSTRACT

Advances in time-resolved structural techniques, mainly in macromolecular crystallography and small-angle X-ray scattering (SAXS), allow for a detailed view of the dynamics of biological macromolecules and reactions between binding partners. Of particular promise, are mix-and-inject techniques, which offer a wide range of experimental possibility as microfluidic mixers are used to rapidly combine two species just prior to data collection. Most mix-and-inject approaches rely on diffusive mixers, which have been effectively used within crystallography and SAXS for a variety of systems, but their success is dependent on a specific set of conditions to facilitate fast diffusion for mixing. The use of a new chaotic advection mixer designed for microfluidic applications helps to further broaden the types of systems compatible with time-resolved mixing experiments. The chaotic advection mixer can create ultra-thin, alternating layers of liquid, enabling faster diffusion so that even more slowly diffusing molecules, like proteins or nucleic acids, can achieve fast mixing on timescales relevant to biological reactions. This mixer was first used in UV-vis absorbance and SAXS experiments with systems of a variety of molecular weights, and thus diffusion speeds. Careful effort was also dedicated to making a loop-loading sample-delivery system that consumes as little sample as possible, enabling the study of precious, laboratory-purified samples. The combination of the versatile mixer with low sample consumption opens the door to many new applications for mix-and-inject studies.


Subject(s)
Microfluidics , Proteins , X-Ray Diffraction , Scattering, Small Angle , X-Rays , Proteins/chemistry
9.
Res Sq ; 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36712138

ABSTRACT

For decades, researchers have been determined to elucidate essential enzymatic functions on the atomic lengths scale by tracing atomic positions in real time. Our work builds on new possibilities unleashed by mix-and-inject serial crystallography (MISC) 1-5 at X-ray free electron laser facilities. In this approach, enzymatic reactions are triggered by mixing substrate or ligand solutions with enzyme microcrystals 6 . Here, we report in atomic detail and with millisecond time-resolution how the Mycobacterium tuberculosis enzyme BlaC is inhibited by sulbactam (SUB). Our results reveal ligand binding heterogeneity, ligand gating 7-9 , cooperativity, induced fit 10,11 and conformational selection 11-13 all from the same set of MISC data, detailing how SUB approaches the catalytic clefts and binds to the enzyme non-covalently before reacting to a trans- enamine. This was made possible in part by the application of the singular value decomposition 14 to the MISC data using a newly developed program that remains functional even if unit cell parameters change during the reaction.

11.
Methods Enzymol ; 677: 41-83, 2022.
Article in English | MEDLINE | ID: mdl-36410957

ABSTRACT

Proteins and nucleic acids, alone and in complex are among the essential building blocks of living organisms. Obtaining a molecular level understanding of their structures, and the changes that occur as they interact, is critical for expanding our knowledge of life processes or disease progression. Here, we motivate and describe an application of solution small angle X-ray scattering (SAXS) which provides valuable information about the structures, ensembles, compositions and dynamics of protein-nucleic acid complexes in solution, in equilibrium and time-resolved studies. Contrast variation (CV-) SAXS permits the visualization of the distinct molecular constituents (protein and/or nucleic acid) within a complex. CV-SAXS can be implemented in two modes. In the simplest, the protein within the complex is effectively rendered invisible by the addition of an inert contrast agent at an appropriate concentration. Under these conditions, the structure, or structural changes of only the nucleic acid component of the complex can be studied in detail. The second mode permits observation of both components of the complex: the protein and the nucleic acid. This approach requires the acquisition of SAXS profiles on the complex at different concentrations of a contrast agent. Here, we review CV-SAXS as applied to protein-nucleic acid complexes in both modes. We provide some theoretical framework for CV-SAXS but focus primarily on providing the necessary information required to implement a successful experiment including experimental design, sample quality assessment, and data analysis.


Subject(s)
Data Analysis , Nucleic Acids , Scattering, Small Angle , X-Ray Diffraction , Research Design , Contrast Media , Proteins/chemistry , Review Literature as Topic
12.
Cell Rep Phys Sci ; 3(7)2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35936555

ABSTRACT

RNA triple helices are commonly observed tertiary motifs that are associated with critical biological functions, including signal transduction. Because the recognition of their biological importance is relatively recent, their full range of structural properties has not yet been elucidated. The integration of solution wide-angle X-ray scattering (WAXS) with molecular dynamics (MD) simulations, described here, provides a new way to capture the structures of major-groove RNA triplexes that evade crystallographic characterization. This method yields excellent agreement between measured and computed WAXS profiles and allows for an atomically detailed visualization of these motifs. Using correlation maps, the relationship between well-defined features in the scattering profiles and real space characteristics of RNA molecules is defined, including the subtle conformational variations in the double-stranded RNA upon the incorporation of a third strand by base triples. This readily applicable approach has the potential to provide insight into interactions that stabilize RNA tertiary structure that enables function.

13.
J Phys Chem B ; 126(35): 6599-6607, 2022 09 08.
Article in English | MEDLINE | ID: mdl-36029222

ABSTRACT

Structure-based drug design (SBDD) is a prominent method in rational drug development and has traditionally benefitted from the atomic models of protein targets obtained using X-ray crystallography at cryogenic temperatures. In this perspective, we highlight recent advances in the development of structural techniques that are capable of probing dynamic information about protein targets. First, we discuss advances in the field of X-ray crystallography including serial room-temperature crystallography as a method for obtaining high-resolution conformational dynamics of protein-inhibitor complexes. Next, we look at cryogenic electron microscopy (cryoEM), another high-resolution technique that has recently been used to study proteins and protein complexes that are too difficult to crystallize. Finally, we present small-angle X-ray scattering (SAXS) as a potential high-throughput screening tool to identify inhibitors that target protein complexes and protein oligomerization.


Subject(s)
Drug Design , Proteins , Crystallography, X-Ray , Proteins/chemistry , Scattering, Small Angle , X-Ray Diffraction
14.
IUCrJ ; 8(Pt 6): 878-895, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34804542

ABSTRACT

Here, we illustrate what happens inside the catalytic cleft of an enzyme when substrate or ligand binds on single-millisecond timescales. The initial phase of the enzymatic cycle is observed with near-atomic resolution using the most advanced X-ray source currently available: the European XFEL (EuXFEL). The high repetition rate of the EuXFEL combined with our mix-and-inject technology enables the initial phase of ceftriaxone binding to the Mycobacterium tuberculosis ß-lactamase to be followed using time-resolved crystallography in real time. It is shown how a diffusion coefficient in enzyme crystals can be derived directly from the X-ray data, enabling the determination of ligand and enzyme-ligand concentrations at any position in the crystal volume as a function of time. In addition, the structure of the irreversible inhibitor sulbactam bound to the enzyme at a 66 ms time delay after mixing is described. This demonstrates that the EuXFEL can be used as an important tool for biomedically relevant research.

15.
Nucleic Acids Res ; 49(9): 5028-5037, 2021 05 21.
Article in English | MEDLINE | ID: mdl-34009316

ABSTRACT

Nucleosomes in all eukaryotic cells are organized into higher order structures that facilitate genome compaction. Visualizing these organized structures is an important step in understanding how genomic DNA is efficiently stored yet remains accessible to information-processing machinery. Arrays of linked nucleosomes serve as useful models for understanding how the properties of both DNA and protein partners affect their arrangement. A number of important questions are also associated with understanding how the spacings between nucleosomes are affected by the histone proteins, chromatin remodelers, or other chromatin-associated protein partners. Contrast variation small angle X-ray scattering (CVSAXS) reports the DNA conformation within protein-DNA complexes and here is applied to measure the conformation(s) of trinucleosomes in solution, with specific sensitivity to the distance between and relative orientation of linked nucleosomes. These data are interpreted in conjunction with DNA models that account for its sequence dependent mechanical properties, and Monte-Carlo techniques that generate realistic structures for comparison with measured scattering profiles. In solution, trinucleosomes segregate into two dominant populations, with the flanking nucleosomes stacked or nearly equilaterally separated, e.g. with roughly equal distance between all pairs of nucleosomes. These populations are consistent with previously observed magnesium-dependent structures of trinucleosomes with shorter linkers.


Subject(s)
Models, Molecular , Nucleosomes/chemistry , DNA/chemistry , Scattering, Small Angle , X-Ray Diffraction
16.
Sci Adv ; 7(17)2021 04.
Article in English | MEDLINE | ID: mdl-33893104

ABSTRACT

Double-stranded DNA (dsDNA) and RNA (dsRNA) helices display an unusual structural diversity. Some structural variations are linked to sequence and may serve as signaling units for protein-binding partners. Therefore, elucidating the mechanisms and factors that modulate these variations is of fundamental importance. While the structural diversity of dsDNA has been extensively studied, similar studies have not been performed for dsRNA. Because of the increasing awareness of RNA's diverse biological roles, such studies are timely and increasingly important. We integrate solution x-ray scattering at wide angles (WAXS) with all-atom molecular dynamics simulations to explore the conformational ensemble of duplex topologies for different sequences and salt conditions. These tightly coordinated studies identify robust correlations between features in the WAXS profiles and duplex geometry and enable atomic-level insights into the structural diversity of DNA and RNA duplexes. Notably, dsRNA displays a marked sensitivity to the valence and identity of its associated cations.

17.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Article in English | MEDLINE | ID: mdl-33785601

ABSTRACT

Cis-acting RNA elements are crucial for the regulation of polyadenylated RNA stability. The element for nuclear expression (ENE) contains a U-rich internal loop flanked by short helices. An ENE stabilizes RNA by sequestering the poly(A) tail via formation of a triplex structure that inhibits a rapid deadenylation-dependent decay pathway. Structure-based bioinformatic studies identified numerous ENE-like elements in evolutionarily diverse genomes, including a subclass containing two ENE motifs separated by a short double-helical region (double ENEs [dENEs]). Here, the structure of a dENE derived from a rice transposable element (TWIFB1) before and after poly(A) binding (∼24 kDa and ∼33 kDa, respectively) is investigated. We combine biochemical structure probing, small angle X-ray scattering (SAXS), and cryo-electron microscopy (cryo-EM) to investigate the dENE structure and its local and global structural changes upon poly(A) binding. Our data reveal 1) the directionality of poly(A) binding to the dENE, and 2) that the dENE-poly(A) interaction involves a motif that protects the 3'-most seven adenylates of the poly(A). Furthermore, we demonstrate that the dENE does not undergo a dramatic global conformational change upon poly(A) binding. These findings are consistent with the recently solved crystal structure of a dENE+poly(A) complex [S.-F. Torabi et al., Science 371, eabe6523 (2021)]. Identification of additional modes of poly(A)-RNA interaction opens new venues for better understanding of poly(A) tail biology.


Subject(s)
Polyadenylation , RNA Stability , RNA/chemistry , DNA Transposable Elements , HEK293 Cells , Humans , Nucleotide Motifs , Oryza/genetics , RNA/metabolism
18.
Biophys J ; 119(12): 2524-2536, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33189689

ABSTRACT

Although conformational dynamics of RNA molecules are potentially important in microRNA (miRNA) processing, the role of the protein binding partners in facilitating the requisite structural changes is not well understood. In previous work, we and others have demonstrated that nonduplex structural elements and the conformational flexibility they support are necessary for efficient RNA binding and cleavage by the proteins associated with the two major stages of miRNA processing. However, recent studies showed that the protein DGCR8 binds primary miRNA and duplex RNA with similar affinities. Here, we study RNA binding by a small recombinant construct of the DGCR8 protein and the RNA conformation changes that result. This construct, the DGCR8 core, contains two double-stranded RNA-binding domains (dsRBDs) and a C-terminal tail. To assess conformational changes resulting from binding, we applied small-angle x-ray scattering with contrast variation to detect conformational changes of primary-miR-16-1 in complex with the DGCR8 core. This method reports only on the RNA conformation within the complex and suggests that the protein bends the RNA upon binding. Supporting work using smFRET to study the conformation of RNA duplexes bound to the core also shows bending. Together, these studies elucidate the role of DGCR8 in interacting with RNA during the early stages of miRNA processing.


Subject(s)
MicroRNAs , RNA-Binding Proteins , MicroRNAs/genetics , MicroRNAs/metabolism , Microcomputers , Nucleic Acid Conformation , Protein Binding , RNA-Binding Proteins/metabolism
19.
IUCrJ ; 7(Pt 5): 870-880, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32939279

ABSTRACT

Macromolecular structures can be determined from solution X-ray scattering. Small-angle X-ray scattering (SAXS) provides global structural information on length scales of 10s to 100s of Ångstroms, and many algorithms are available to convert SAXS data into low-resolution structural envelopes. Extension of measurements to wider scattering angles (WAXS or wide-angle X-ray scattering) can sharpen the resolution to below 10 Å, filling in structural details that can be critical for biological function. These WAXS profiles are especially challenging to interpret because of the significant contribution of solvent in addition to solute on these smaller length scales. Based on training with molecular dynamics generated models, the application of extreme gradient boosting (XGBoost) is discussed, which is a supervised machine learning (ML) approach to interpret features in solution scattering profiles. These ML methods are applied to predict key structural parameters of double-stranded ribonucleic acid (dsRNA) duplexes. Duplex conformations vary with salt and sequence and directly impact the foldability of functional RNA molecules. The strong structural periodicities in these duplexes yield scattering profiles with rich sets of features at intermediate-to-wide scattering angles. In the ML models, these profiles are treated as 1D images or features. These ML models identify specific scattering angles, or regions of scattering angles, which correspond with and successfully predict distinct structural parameters. Thus, this work demonstrates that ML strategies can integrate theoretical molecular models with experimental solution scattering data, providing a new framework for extracting highly relevant structural information from solution experiments on biological macromolecules.

20.
J Biol Chem ; 295(47): 15923-15932, 2020 11 20.
Article in English | MEDLINE | ID: mdl-32913117

ABSTRACT

Despite the threat to human health posed by some single-stranded RNA viruses, little is understood about their assembly. The goal of this work is to introduce a new tool for watching an RNA genome direct its own packaging and encapsidation by proteins. Contrast variation small-angle X-ray scattering (CV-SAXS) is a powerful tool with the potential to monitor the changing structure of a viral RNA through this assembly process. The proteins, though present, do not contribute to the measured signal. As a first step in assessing the feasibility of viral genome studies, the structure of encapsidated MS2 RNA was exclusively detected with CV-SAXS and compared with a structure derived from asymmetric cryo-EM reconstructions. Additional comparisons with free RNA highlight the significant structural rearrangements induced by capsid proteins and invite the application of time-resolved CV-SAXS to reveal interactions that result in efficient viral assembly.


Subject(s)
Genome, Viral , Levivirus/chemistry , RNA, Viral/chemistry , Scattering, Small Angle , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...