Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Nat Chem ; 16(6): 922-929, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38570729

ABSTRACT

Lithium metal batteries represent a promising technology for next-generation energy storage, but they still suffer from poor cycle life due to lithium dendrite formation and cathode cracking. Fluorinated solvents can improve battery longevity by improving LiF content in the solid-electrolyte interphase; however, the high cost and environmental concerns of fluorinated solvents limit battery viability. Here we designed a series of fluorine-free solvents through the methylation of 1,2-dimethoxyethane, which promotes inorganic LiF-rich interphase formation through anion reduction and achieves high oxidation stability. The anion-derived LiF interphases suppress lithium dendrite growth on the lithium anode and minimize cathode cracking under high-voltage operation. The Li+-solvent structure is investigated through in situ techniques and simulations to draw correlations between the interphase compositions and electrochemical performances. The methylation strategy provides an alternative pathway for electrolyte engineering towards high-voltage electrolytes while reducing dependence on expensive fluorinated solvents.

3.
Nat Commun ; 15(1): 1206, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38332019

ABSTRACT

Micro-sized silicon anodes can significantly increase the energy density of lithium-ion batteries with low cost. However, the large silicon volume changes during cycling cause cracks for both organic-inorganic interphases and silicon particles. The liquid electrolytes further penetrate the cracked silicon particles and reform the interphases, resulting in huge electrode swelling and quick capacity decay. Here we resolve these challenges by designing a high-voltage electrolyte that forms silicon-phobic interphases with weak bonding to lithium-silicon alloys. The designed electrolyte enables micro-sized silicon anodes (5 µm, 4.1 mAh cm-2) to achieve a Coulombic efficiency of 99.8% and capacity of 2175 mAh g-1 for >250 cycles and enable 100 mAh LiNi0.8Co0.15Al0.05O2 pouch full cells to deliver a high capacity of 172 mAh g-1 for 120 cycles with Coulombic efficiency of >99.9%. The high-voltage electrolytes that are capable of forming silicon-phobic interphases pave new ways for the commercialization of lithium-ion batteries using micro-sized silicon anodes.

4.
Nature ; 614(7949): 694-700, 2023 02.
Article in English | MEDLINE | ID: mdl-36755091

ABSTRACT

The ideal electrolyte for the widely used LiNi0.8Mn0.1Co0.1O2 (NMC811)||graphite lithium-ion batteries is expected to have the capability of supporting higher voltages (≥4.5 volts), fast charging (≤15 minutes), charging/discharging over a wide temperature range (±60 degrees Celsius) without lithium plating, and non-flammability1-4. No existing electrolyte simultaneously meets all these requirements and electrolyte design is hindered by the absence of an effective guiding principle that addresses the relationships between battery performance, solvation structure and solid-electrolyte-interphase chemistry5. Here we report and validate an electrolyte design strategy based on a group of soft solvents that strikes a balance between weak Li+-solvent interactions, sufficient salt dissociation and desired electrochemistry to fulfil all the aforementioned requirements. Remarkably, the 4.5-volt NMC811||graphite coin cells with areal capacities of more than 2.5 milliampere hours per square centimetre retain 75 per cent (54 per cent) of their room-temperature capacity when these cells are charged and discharged at -50 degrees Celsius (-60 degrees Celsius) at a C rate of 0.1C, and the NMC811||graphite pouch cells with lean electrolyte (2.5 grams per ampere hour) achieve stable cycling with an average Coulombic efficiency of more than 99.9 per cent at -30 degrees Celsius. The comprehensive analysis further reveals an impedance matching between the NMC811 cathode and the graphite anode owing to the formation of similar lithium-fluoride-rich interphases, thus effectively avoiding lithium plating at low temperatures. This electrolyte design principle can be extended to other alkali-metal-ion batteries operating under extreme conditions.

5.
Sci Adv ; 8(49): eadd2031, 2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36490337

ABSTRACT

Supramolecular frameworks have been widely synthesized for ion transport applications. However, conventional approaches of constructing ion transport pathways in supramolecular frameworks typically require complex processes and display poor scalability, high cost, and limited sustainability. Here, we report the scalable and cost-effective synthesis of an ion-conducting (e.g., Na+) cellulose-derived supramolecule (Na-CS) that features a three-dimensional, hierarchical, and crystalline structure composed of massively aligned, one-dimensional, and ångström-scale open channels. Using wood-based Na-CS as a model material, we achieve high ionic conductivities (e.g., 0.23 S/cm in 20 wt% NaOH at 25 °C) even with a highly dense microstructure, in stark contrast to conventional membranes that typically rely on large pores (e.g., submicrometers to a few micrometers) to obtain comparable ionic conductivities. This synthesis approach can be universally applied to a variety of cellulose materials beyond wood, including cotton textiles, fibers, paper, and ink, which suggests excellent potential for a number of applications such as ion-conductive membranes, ionic cables, and ionotronic devices.

6.
Nano Lett ; 22(18): 7535-7544, 2022 09 28.
Article in English | MEDLINE | ID: mdl-36070490

ABSTRACT

The rechargeability of aqueous zinc metal batteries is plagued by parasitic reactions of the zinc metal anode and detrimental morphologies such as dendritic or dead zinc. To improve the zinc metal reversibility, hereby we report a new solution structure of aqueous electrolyte with hydroxyl-ion scavengers and hydrophobicity localized in solvent clusters. We show that although hydrophobicity sounds counterintuitive for an aqueous system, hydrophilic pockets may be encapsulated inside a hydrophobic outer layer, and a hydrophobic anode-electrolyte interface can be generated through the addition of a cation-philic, strongly anion-phobic, and OH--reactive diluent. The localized hydrophobicity enables less active water and less absorbed water on the Zn anode surface, which suppresses the parasitic water reduction; while the hydroxyl-ion-scavenging functionality further minimizes undesired passivation layer formation, thus leading to superior reversibility (an average Zn plating/stripping efficiency of 99.72% for 1000 cycles) and lifetime (80.6% capacity retention after 5000 cycles) of zinc batteries.


Subject(s)
Electrolytes , Zinc , Anions , Cations , Hydrophobic and Hydrophilic Interactions , Solvents , Water
7.
Angew Chem Int Ed Engl ; 61(35): e202205967, 2022 Aug 26.
Article in English | MEDLINE | ID: mdl-35789166

ABSTRACT

LiNix Coy Mnz O2 (x+y+z=1)||graphite lithium-ion battery (LIB) chemistry promises practical applications. However, its low-temperature (≤ -20 °C) performance is poor because the increased resistance encountered by Li+ transport in and across the bulk electrolytes and the electrolyte/electrode interphases induces capacity loss and battery failures. Though tremendous efforts have been made, there is still no effective way to reduce the charge transfer resistance (Rct ) which dominates low-temperature LIBs performance. Herein, we propose a strategy of using low-polarity-solvent electrolytes which have weak interactions between the solvents and the Li+ to reduce Rct , achieving facile Li+ transport at sub-zero temperatures. The exemplary electrolyte enables LiNi0.8 Mn0.1 Co0.1 O2 ||graphite cells to deliver a capacity of ≈113 mAh g-1 (98 % full-cell capacity) at 25 °C and to remain 82 % of their room-temperature capacity at -20 °C without lithium plating at 1/3C. They also retain 84 % of their capacity at -30 °C and 78 % of their capacity at -40 °C and show stable cycling at 50 °C.

8.
Proc Natl Acad Sci U S A ; 119(24): e2121138119, 2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35675422

ABSTRACT

Rechargeable Zn metal batteries (RZMBs) may provide a more sustainable and lower-cost alternative to established battery technologies in meeting energy storage applications of the future. However, the most promising electrolytes for RZMBs are generally aqueous and require high concentrations of salt(s) to bring efficiencies toward commercially viable levels and mitigate water-originated parasitic reactions including hydrogen evolution and corrosion. Electrolytes based on nonaqueous solvents are promising for avoiding these issues, but full cell performance demonstrations with solvents other than water have been very limited. To address these challenges, we investigated MeOH as an alternative electrolyte solvent. These MeOH-based electrolytes exhibited exceptional Zn reversibility over a wide temperature range, with a Coulombic efficiency > 99.5% at 50% Zn utilization without cell short-circuit behavior for > 1,800 h. More important, this remarkable performance translates well to Zn || metal-free organic cathode full cells, supporting < 6% capacity decay after > 800 cycles at -40 °C.

9.
Small ; 18(5): e2104986, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34850544

ABSTRACT

The formation of solid-electrolyte interphase (SEI) in "water-in-salt" electrolyte (WiSE) expands the electrochemical stability window of aqueous electrolytes beyond 3.0 V. However, the parasitic hydrogen evolution reaction that drives anode corrosion, cracking, and the subsequent reformation of SEI still occurs, compromising long-term cycling performance of the batteries. To improve cycling stability, an unsaturated monomer acrylamide (AM) is introduced as an electrolyte additive, whose presence in WiSE reduces its viscosity and improves ionic conductivity. Upon charging, AM electropolymerizes into polyacrylamide, as confirmed both experimentally and computationally. The in situ polymer constitutes effective protection layers at both anode and cathode surfaces, and enables LiMn2 O4 ||L-TiO2 full cells with high specific capacity (157 mAh g-1 at 1 C), long-term cycling stability (80% capacity retention within 200 cycles at 1 C), and high rate capability (79 mAh g-1 at 30 C). The in situ electropolymerization found in this work provides an alternative and highly effective strategy to design protective interphases at the negative and positive electrodes for high-voltage aqueous batteries of lithium-ion or beyond.

10.
Angew Chem Int Ed Engl ; 60(42): 22812-22817, 2021 Oct 11.
Article in English | MEDLINE | ID: mdl-34379346

ABSTRACT

The introduction of "water-in-salt" electrolyte (WiSE) concept opens a new horizon to aqueous electrochemistry that is benefited from the formation of a solid-electrolyte interphase (SEI). However, such SEI still faces multiple challenges, including dissolution, mechanical damaging, and incessant reforming, which result in poor cycling stability. Here, we report a polymeric additive, polyacrylamide (PAM) that effectively stabilizes the interphase in WiSE. With the addition of 5 molar % PAM to 21 mol kg-1 LiTFSI electrolyte, a LiMn2 O4 ∥L-TiO2 full cell exhibits enhanced cycling stability with 86 % capacity retention after 100 cycles at 1 C. The formation mechanism and evolution of PAM-assisted SEI was investigated using operando small angle neutron scattering and density functional theory (DFT) calculations, which reveal that PAM minimizes the presence of free water molecules at the anode/electrolyte interface, accelerates the TFSI- anion decomposition, and densifies the SEI.

11.
Nat Nanotechnol ; 16(8): 902-910, 2021 08.
Article in English | MEDLINE | ID: mdl-33972758

ABSTRACT

Metallic zinc is an ideal anode due to its high theoretical capacity (820 mAh g-1), low redox potential (-0.762 V versus the standard hydrogen electrode), high abundance and low toxicity. When used in aqueous electrolyte, it also brings intrinsic safety, but suffers from severe irreversibility. This is best exemplified by low coulombic efficiency, dendrite growth and water consumption. This is thought to be due to severe hydrogen evolution during zinc plating and stripping, hitherto making the in-situ formation of a solid-electrolyte interphase (SEI) impossible. Here, we report an aqueous zinc battery in which a dilute and acidic aqueous electrolyte with an alkylammonium salt additive assists the formation of a robust, Zn2+-conducting and waterproof SEI. The presence of this SEI enables excellent performance: dendrite-free zinc plating/stripping at 99.9% coulombic efficiency in a Ti||Zn asymmetric cell for 1,000 cycles; steady charge-discharge in a Zn||Zn symmetric cell for 6,000 cycles (6,000 h); and high energy densities (136 Wh kg-1 in a Zn||VOPO4 full battery with 88.7% retention for >6,000 cycles, 325 Wh kg-1 in a Zn||O2 full battery for >300 cycles and 218 Wh kg-1 in a Zn||MnO2 full battery with 88.5% retention for 1,000 cycles) using limited zinc. The SEI-forming electrolyte also allows the reversible operation of an anode-free pouch cell of Ti||ZnxVOPO4 at 100% depth of discharge for 100 cycles, thus establishing aqueous zinc batteries as viable cell systems for practical applications.

12.
Angew Chem Int Ed Engl ; 60(22): 12438-12445, 2021 May 25.
Article in English | MEDLINE | ID: mdl-33580625

ABSTRACT

Aqueous rechargeable zinc metal batteries promise attractive advantages including safety, high volumetric energy density, and low cost; however, such benefits cannot be unlocked unless Zn reversibility meets stringent commercial viability. Herein, we report remarkable improvements on Zn reversibility in aqueous electrolytes when phosphonium-based cations are used to reshape interfacial structures and interphasial chemistries, particularly when their ligands contain an ether linkage. This novel aqueous electrolyte supports unprecedented Zn reversibility by showing dendrite-free Zn plating/stripping for over 6400 h at 0.5 mA cm-2 , or over 280 h at 2.5 mA cm-2 , with coulombic efficiency above 99 % even with 20 % Zn utilization per cycle. Excellent full cell performance is demonstrated with Na2 V6 O16 ⋅1.63 H2 O cathode, which cycles for 2000 times at 300 mA g-1 . The microscopic characterization and modeling identify the mechanism of unique interphase chemistry from phosphonium and its functionalities as the key factors responsible for dictating reversible Zn chemistry.

13.
iScience ; 23(2): 100844, 2020 Feb 21.
Article in English | MEDLINE | ID: mdl-32006759

ABSTRACT

Coupling thin Li metal anodes with high-capacity/high-voltage cathodes such as LiNi0.8Co0.1Mn0.1O2 (NCM811) is a promising way to increase lithium battery energy density. Yet, the realization of high-performance full cells remains a formidable challenge. Here, we demonstrate a new class of highly coordinated, nonflammable carbonate electrolytes based on lithium bis(fluorosulfonyl)imide (LiFSI) in propylene carbonate/fluoroethylene carbonate mixtures. Utilizing an optimal salt concentration (4 M LiFSI) of the electrolyte results in a unique coordination structure of Li+-FSI--solvent cluster, which is critical for enabling the formation of stable interfaces on both the thin Li metal anode and high-voltage NCM811 cathode. Under highly demanding cell configuration and operating conditions (Li metal anode = 35 µm, areal capacity/charge voltage of NCM811 cathode = 4.8 mAh cm-2/4.6 V, and anode excess capacity [relative to the cathode] = 0.83), the Li metal-based full cell provides exceptional electrochemical performance (energy densities = 679 Wh kgcell-1/1,024 Wh Lcell-1) coupled with nonflammability.

14.
Angew Chem Int Ed Engl ; 58(49): 17820-17826, 2019 Dec 02.
Article in English | MEDLINE | ID: mdl-31571354

ABSTRACT

The lack of high-power and stable cathodes prohibits the development of rechargeable metal (Na, Mg, Al) batteries. Herein, poly(hexaazatrinaphthalene) (PHATN), an environmentally benign, abundant and sustainable polymer, is employed as a universal cathode material for these batteries. In Na-ion batteries (NIBs), PHATN delivers a reversible capacity of 220 mAh g-1 at 50 mA g-1 , corresponding to the energy density of 440 Wh kg-1 , and still retains 100 mAh g-1 at 10 Ag-1 after 50 000 cycles, which is among the best performances in NIBs. Such an exceptional performance is also observed in more challenging Mg and Al batteries. PHATN retains reversible capacities of 110 mAh g-1 after 200 cycles in Mg batteries and 92 mAh g-1 after 100 cycles in Al batteries. DFT calculations, X-ray photoelectron spectroscopy, Raman, and FTIR show that the electron-deficient pyrazine sites in PHATN are the redox centers to reversibly react with metal ions.

15.
Nature ; 570(7762): E65, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31164722

ABSTRACT

In Fig. 3e of this Letter, the labels "Br-Cl1" and "Br-Cl2" should read "Br-Br1" and "Br-Br2", respectively. In the Methods section 'Preparation of electrodes', the phrase "anhydrous LiBr/LiCl was replaced by LiBr·H2O (99.95%; Sigma-Aldrich) and LiCl (99.95%; Sigma-Aldrich)" should read "anhydrous LiBr/LiCl was replaced by LiBr·H2O (99.95%; Sigma-Aldrich) and LiCl·H2O (99.95%; Sigma-Aldrich)". These errors have been corrected online.

16.
Nature ; 569(7755): 245-250, 2019 05.
Article in English | MEDLINE | ID: mdl-31068723

ABSTRACT

The use of 'water-in-salt' electrolytes has considerably expanded the electrochemical window of aqueous lithium-ion batteries to 3 to 4 volts, making it possible to couple high-voltage cathodes with low-potential graphite anodes1-4. However, the limited lithium intercalation capacities (less than 200 milliampere-hours per gram) of typical transition-metal-oxide cathodes5,6 preclude higher energy densities. Partial7,8 or exclusive9 anionic redox reactions may achieve higher capacity, but at the expense of reversibility. Here we report a halogen conversion-intercalation chemistry in graphite that produces composite electrodes with a capacity of 243 milliampere-hours per gram (for the total weight of the electrode) at an average potential of 4.2 volts versus Li/Li+. Experimental characterization and modelling attribute this high specific capacity to a densely packed stage-I graphite intercalation compound, C3.5[Br0.5Cl0.5], which can form reversibly in water-in-bisalt electrolyte. By coupling this cathode with a passivated graphite anode, we create a 4-volt-class aqueous Li-ion full cell with an energy density of 460 watt-hours per kilogram of total composite electrode and about 100 per cent Coulombic efficiency. This anion conversion-intercalation mechanism combines the high energy densities of the conversion reactions, the excellent reversibility of the intercalation mechanism and the improved safety of aqueous batteries.

17.
Small ; 15(6): e1804670, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30645034

ABSTRACT

The rapid development of ultrahigh-capacity alloying or conversion-type anodes in rechargeable lithium (Li)-ion batteries calls for matching cathodes for next-generation energy storage devices. The high volumetric and gravimetric capacities, low cost, and abundance of iron (Fe) make conversion-type iron fluoride (FeF2 and FeF3 )-based cathodes extremely promising candidates for high specific energy cells. Here, the substantial boost in the capacity of FeF2 achieved with the addition of NiF2 is reported. A systematic study of a series of FeF2 -NiF2 solid solution cathodes with precisely controlled morphology and composition reveals that the presence of Ni may undesirably accelerate capacity fading. Using a powerful combination of state-of-the-art analytical techniques in combination with the density functional theory calculations, fundamental mechanisms responsible for such a behavior are uncovered. The unique insights reported in this study highlight the importance of careful selection of metals and electrolytes for optimizing electrochemical properties of metal fluoride cathodes.

18.
J Chem Phys ; 148(22): 222830, 2018 Jun 14.
Article in English | MEDLINE | ID: mdl-29907029

ABSTRACT

Attempts to establish an absolute single-ion hydration free energy scale have followed multiple strategies. Two central themes consist of (1) employing bulk pair thermodynamic data and an underlying interfacial-potential-free model to partition the hydration free energy into individual contributions [Marcus, Latimer, and tetraphenyl-arsonium/tetraphenyl-borate (TATB) methods] or (2) utilizing bulk thermodynamic and cluster data to estimate the free energy to insert a proton into water, including in principle an interfacial potential contribution [the cluster pair approximation (CPA)]. While the results for the hydration free energy of the proton agree remarkably well between the three approaches in the first category, the value differs from the CPA result by roughly +10 kcal/mol, implying a value for the effective electrochemical surface potential of water of -0.4 V. This paper provides a computational re-analysis of the TATB method for single-ion free energies using quasichemical theory. A previous study indicated a significant discrepancy between the free energies of hydration for the TA cation and the TB anion. We show that the main contribution to this large computed difference is an electrostatic artifact arising from modeling interactions in periodic boundaries. No attempt is made here to develop more accurate models for the local ion/solvent interactions that may lead to further small free energy differences between the TA and TB ions, but the results clarify the primary importance of interfacial potential effects for analysis of the various free energy scales. Results are also presented, related to the TATB assumption in the organic solvents dimethyl sulfoxide and 1,2-dichloroethane.

19.
J Chem Phys ; 147(16): 161710, 2017 Oct 28.
Article in English | MEDLINE | ID: mdl-29096450

ABSTRACT

Research on fundamental interactions in Li-ion batteries is accelerating due to the importance of developing batteries with enhanced energy and power densities while maintaining safety. Improving electrode materials and controlling the formation of the solid electrolyte interphase during the first battery charge have been the main focus areas for research. Ion-solvent interactions in the electrolyte are also of great importance in tuning solvation and transport properties, however. Here we present ab initio density functional theory simulations of a Li+ ion in ethylene and propylene carbonates. The aim is to obtain a detailed analysis of local solvation structure and solvent polarization near the ion and in the bulk. The results indicate the significance of molecular polarization for developing accurate solvation models. The simulations illustrate the substantial differences between ion solvation in water and in organic materials.

20.
J Chem Phys ; 141(18): 18C512, 2014 Nov 14.
Article in English | MEDLINE | ID: mdl-25399177

ABSTRACT

The free energy change for transferring a single ion across the water liquid/vapor interface includes an electrochemical surface potential contribution. Since this potential is not directly accessible to thermodynamic measurement, several extra-thermodynamic approaches have been employed to infer its sign and magnitude, with a resulting wide spread of values. Here, we examine further the thermodynamics of proton hydration and the electrochemical surface potential of water along three directions: (1) a basic relation of interfacial electrostatics and experimental results on ion distributions near a water/organic interface are employed to infer a solvent contribution to the electrochemical surface potential, (2) a re-analysis is performed of the existing bulk and cluster ion hydration data, and (3) extensive computational modeling is conducted to examine the size dependence of hydration enthalpy differences for the NaF ion pair between the small cluster and the converged bulk limits. The computational studies include classical polarizable models and high-level quantum chemical methods. The new theoretical analysis of existing experimental data and the combined classical/quantum modeling lead to results consistent with our previously derived proton hydration quantities.

SELECTION OF CITATIONS
SEARCH DETAIL
...