Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
Sci Rep ; 13(1): 7417, 2023 05 07.
Article in English | MEDLINE | ID: mdl-37150777

ABSTRACT

Coccolithophores, marine calcifying phytoplankton, are important primary producers impacting the global carbon cycle at different timescales. Their biomineral structures, the calcite containing coccoliths, are among the most elaborate hard parts of any organism. Understanding the morphogenesis of coccoliths is not only relevant in the context of coccolithophore eco-physiology but will also inform biomineralization and crystal design research more generally. The recent discovery of a silicon (Si) requirement for crystal shaping in some coccolithophores has opened up a new avenue of biomineralization research. In order to develop a mechanistic understanding of the role of Si, the presence and localization of this chemical element in coccoliths needs to be known. Here, we document for the first time the uneven Si distribution in Helicosphaera carteri coccoliths through three synchrotron-based techniques employing X-ray Fluorescence and Infrared Spectromicroscopy. The enrichment of Si in specific areas of the coccoliths point to a targeted role of this element in the coccolith formation. Our findings mark a key step in biomineralization research because it opens the door for a detailed mechanistic understanding of the role Si plays in shaping coccolith crystals.


Subject(s)
Exoskeleton Device , Haptophyta , Calcium Carbonate , Silicon , Fossils , Haptophyta/physiology , Calcium
2.
Sci Rep ; 12(1): 2044, 2022 Feb 07.
Article in English | MEDLINE | ID: mdl-35132110

ABSTRACT

Aggregation of volcanic ash is known to significantly impact sedimentation from volcanic plumes. The study of particle aggregates during tephra fallout is crucial to increase our understanding of both ash aggregation and sedimentation. In this work, we describe key features of ash aggregates and ash sedimentation associated with eleven Vulcanian explosions at Sakurajima Volcano (Japan) based on state-of-the-art sampling techniques. We identified five types of aggregates of both Particle Cluster (PC) and Accretionary Pellet (AP) categories. In particular, we found that PCs and the first and third type of APs can coexist within the same eruption in rainy conditions. We also found that the aerodynamic properties of aggregates (e.g., terminal velocity and density) depend on their type. In addition, grainsize analysis revealed that characteristics of the grainsize distributions (GSDs) of tephra samples correlate with the typology of the aggregates identified. In fact, bimodal GSDs correlate with the presence of cored clusters (PC3) and liquid pellets (AP3), while unimodal GSDs correlate either with the occurrence of ash clusters (PC1) or with the large particles (coarse ash) coated by fine ash (PC2).

SELECTION OF CITATIONS
SEARCH DETAIL
...