Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Pediatr Res ; 93(4): 827-837, 2023 03.
Article in English | MEDLINE | ID: mdl-35794251

ABSTRACT

BACKGROUND: Targeted rapid degradation of bilirubin has the potential to thwart incipient bilirubin encephalopathy. We investigated a novel spinel-structured citrate-functionalized trimanganese tetroxide nanoparticle (C-Mn3O4 NP, the nanodrug) to degrade both systemic and neural bilirubin loads. METHOD: Severe neonatal unconjugated hyperbilirubinemia (SNH) was induced in neonatal C57BL/6j mice model with phenylhydrazine (PHz) intoxication. Efficiency of the nanodrug on both in vivo bilirubin degradation and amelioration of bilirubin encephalopathy and associated neurobehavioral sequelae were evaluated. RESULTS: Single oral dose (0.25 mg kg-1 bodyweight) of the nanodrug reduced both total serum bilirubin (TSB) and unconjugated bilirubin (UCB) in SNH rodents. Significant (p < 0.0001) UCB and TSB-degradation rates were reported within 4-8 h at 1.84 ± 0.26 and 2.19 ± 0.31 mg dL-1 h-1, respectively. Neural bilirubin load was decreased by 5.6 nmol g-1 (p = 0.0002) along with improved measures of neurobehavior, neuromotor movements, learning, and memory. Histopathological studies confirm that the nanodrug prevented neural cell reduction in Purkinje and substantia nigra regions, eosinophilic neurons, spongiosis, and cell shrinkage in SNH brain parenchyma. Brain oxidative status was maintained in nanodrug-treated SNH cohort. Pharmacokinetic data corroborated the bilirubin degradation rate with plasma nanodrug concentrations. CONCLUSION: This study demonstrates the in vivo capacity of this novel nanodrug to reduce systemic and neural bilirubin load and reverse bilirubin-induced neurotoxicity. Further compilation of a drug-safety-dossier is warranted to translate this novel therapeutic chemopreventive approach to clinical settings. IMPACT: None of the current pharmacotherapeutics treat severe neonatal hyperbilirubinemia (SNH) to prevent risks of neurotoxicity. In this preclinical study, a newly investigated nano-formulation, citrate-functionalized Mn3O4 nanoparticles (C-Mn3O4 NPs), exhibits bilirubin reduction properties in rodents. Chemopreventive properties of this nano-formulation demonstrate an efficacious, efficient agent that appears to be safe in these early studies. Translation of C-Mn3O4 NPs to prospective preclinical and clinical trials in appropriate in vivo models should be explored as a potential novel pharmacotherapy for SNH.


Subject(s)
Hyperbilirubinemia, Neonatal , Kernicterus , Manganese Compounds , Animals , Mice , Bilirubin , Chemoprevention , Hyperbilirubinemia, Neonatal/prevention & control , Kernicterus/prevention & control , Mice, Inbred C57BL , Prospective Studies , Animals, Newborn , Disease Models, Animal , Manganese Compounds/administration & dosage , Nanoparticles/administration & dosage
2.
ACS Nano ; 2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36414479

ABSTRACT

Optical fibers equipped with plasmonic flow sensors at their tips are fabricated and investigated as photothermomechanical nanopumps for the active transport of target analytes to the sensor surface. The nanopumps are prepared using a bottom-up strategy: i.e., by sequentially stacking a monolayer of a thermoresponsive polymer and a plasmonic nanohole array on an optical fiber tip. The temperature-dependent collapse and swelling of the polymer is used to create a flow-through pumping mechanism. The heat required for pumping is generated by exploiting the photothermal effect in the plasmonic nanohole array upon irradiation with laser light (405 nm). Simultaneous detection of analytes by the plasmonic sensor is achieved by monitoring changes in its optical response at longer wavelengths (∼500-800 nm). Active mass transport by pumping through the holes of the plasmonic nanohole array is visualized by particle imaging velocimetry. Finally, the performance of the photothermomechanical nanopumps is investigated for two types of analytes, namely nanoscale objects (gold nanoparticles) and molecules (11-mercaptoundecanoic acid). In the presence of the pumping mechanism, a 4-fold increase in sensitivity was observed compared to the purely photothermal effect, demonstrating the potential of the presented photothermomechanical nanopumps for sensing applications.

3.
Biosens Bioelectron ; 132: 368-374, 2019 May 01.
Article in English | MEDLINE | ID: mdl-30901726

ABSTRACT

A simple, convenient, and inexpensive method to fabricate optical fiber based biosensors which utilize periodic hole arrays in gold films for signal transduction is reported. The process of hole array formation mainly relies on self-assembly of hydrogel microgels in combination with chemical gold film deposition and subsequent transfer of the perforated film onto an optical fiber tip. In the fabrication process solely chemical wet lab techniques are used, avoiding cost-intensive instrumentation or clean room facilities. The presented method for preparing fiber optic plasmonic sensors provides high throughput and is perfectly suited for commercialization using batch processing. The transfer of the perforated gold film onto an optical fiber tip does not affect the sensitivity of the biosensor ((420 ±â€¯83) nm/refractive index unit (RIU)), which is comparable to sensitivities of sensor platforms based on periodic hole arrays in gold films prepared by significantly more complex methods. Furthermore, real-time and in-line immunoassay studies with a specially designed 3D printed flow cell are presented exploiting the presented optical fiber based biosensors.


Subject(s)
Fiber Optic Technology/instrumentation , Immunoassay/instrumentation , Immunoglobulin G/analysis , Surface Plasmon Resonance/instrumentation , Animals , Equipment Design , Goats , Gold/chemistry , Optical Fibers , Printing, Three-Dimensional , Rabbits , Refractometry/instrumentation
4.
ACS Omega ; 3(11): 15975-15987, 2018 Nov 30.
Article in English | MEDLINE | ID: mdl-30556021

ABSTRACT

Ubiquitousness in the target organs and associated oxidative stress are the most common manifestations of heavy-metal poisoning in living bodies. While chelation of toxic heavy metals is important as therapeutic strategy, scavenging of increased reactive oxygen species, reactive nitrogen species and free radicals are equally important. Here, we have studied the lead (Pb) chelating efficacy of a model flavonoid morin using steady-state and picosecond-resolved optical spectroscopy. The efficacy of morin in presence of other flavonoid (naringin) and polyphenol (ellagic acid) leading to synergistic combination has also been confirmed from the spectroscopic studies. Our studies further reveal that antioxidant activity (2,2-diphenyl-1-picrylhydrazyl assay) of the Pb-morin complex is sustainable compared to that of Pb-free morin. The metal-morin chelate is also found to be significantly soluble compared to that of morin in aqueous media. Heavy-metal chelation and sustainable antioxidant activity of the soluble chelate complex are found to accelerate the Pb-detoxification in the chemical bench (in vitro). Considering the synergistic effect of flavonoids in Pb-detoxification and their omnipresence in medicinal plants, we have prepared a mixture (SKP17LIV01) of flavonoids and polyphenols of plant origin. The mixture has been characterized using high-resolution liquid chromatography assisted mass spectrometry. The mixture (SKP17LIV01) containing 34 flavonoids and 76 other polyphenols have been used to investigate the Pb detoxification in mouse model. The biochemical and histopathological studies on the mouse model confirm the dual action in preclinical studies.

5.
J Biomed Opt ; 22(5): 55006, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28510622

ABSTRACT

Anemia severely and adversely affects human health and socioeconomic development. Measuring hemoglobin with the minimal involvement of human and financial resources has always been challenging. We describe a translational spectroscopic technique for noncontact hemoglobin measurement at low-resource point-of-care settings in human subjects, independent of their skin color, age, and sex, by measuring the optical spectrum of the blood flowing in the vascular bed of the bulbar conjunctiva. We developed software on the LabVIEW platform for automatic data acquisition and interpretation by nonexperts. The device is calibrated by comparing the differential absorbance of light of wavelength 576 and 600 nm with the clinical hemoglobin level of the subject. Our proposed method is consistent with the results obtained using the current gold standard, the automated hematology analyzer. The proposed noncontact optical device for hemoglobin estimation is highly efficient, inexpensive, feasible, and extremely useful in low-resource point-of-care settings. The device output correlates with the different degrees of anemia with absolute and trending accuracy similar to those of widely used invasive methods. Moreover, the device can instantaneously transmit the generated report to a medical expert through e-mail, text messaging, or mobile apps.


Subject(s)
Anemia/diagnosis , Hemoglobins/analysis , Point-of-Care Systems , Spectrum Analysis/standards , Humans , Reproducibility of Results , Software
6.
Sci Rep ; 6: 34399, 2016 Sep 28.
Article in English | MEDLINE | ID: mdl-27677331

ABSTRACT

The structural-functional regulation of enzymes by the administration of an external stimulus such as light could create photo-switches that exhibit unique biotechnological applications. However, molecular recognition of small ligands is a central phenomenon involved in all biological processes. We demonstrate herein that the molecular recognition of a photochromic ligand, dihydroindolizine (DHI), by serine protease α-chymotrypsin (CHT) leads to the photo-control of enzymatic activity. We synthesized and optically characterized the photochromic DHI. Light-induced reversible pyrroline ring opening and a consequent thermal back reaction via 1,5-electrocyclization are responsible for the photochromic behavior. Furthermore, DHI inhibits the enzymatic activity of CHT in a photo-controlled manner. Simultaneous binding of the well-known inhibitors 4-nitrophenyl anthranilate (NPA) or proflavin (PF) in the presence of DHI displays spectral overlap between the emission of CHT-NPA or CHT-PF with the respective absorption of cis or trans DHI. The results suggest an opportunity to explore the binding site of DHI using Förster resonance energy transfer (FRET). Moreover, to more specifically evaluate the DHI binding interactions, we employed molecular docking calculations, which suggested binding near the hydrophobic site of Cys-1-Cys-122 residues. Variations in the electrostatic interactions of the two conformers of DHI adopt unfavorable conformations, leading to the allosteric inhibition of enzymatic activity.

7.
Future Sci OA ; 2(4): FSO146, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28116129

ABSTRACT

AIM: To test the potential of orally administered citrate functionalized Mn3O4 nanoparticles (C-Mn3O4 NPs) as a therapeutic agent against hepatic fibrosis and associated chronic liver diseases. MATERIALS & METHODS: C-Mn3O4 NPs were synthesized and the pH dependent antioxidant mechanism was characterized by in vitro studies. CCl4 intoxicated mice were orally treated with C-Mn3O4 NPs to test its in vivo antioxidant and antifibrotic ability. RESULTS: We demonstrated ultrahigh efficacy of the C-Mn3O4 NPs in treatment of chronic liver diseases such as hepatic fibrosis and cirrhosis in mice compared with conventional medicine silymarin without any toxicological implications. CONCLUSION: These findings may pave the way for practical clinical use of the NPs as safe medication of chronic liver diseases associated with fibrosis and cirrhosis in human subjects.

8.
Nanomedicine (Lond) ; 10(15): 2349-63, 2015.
Article in English | MEDLINE | ID: mdl-26228093

ABSTRACT

AIM: Testing the potential of citrate-capped Mn3O4 nanoparticles (NPs) as a therapeutic agent for alternative rapid treatment of hyperbilirubinemia through direct removal of bilirubin (BR) from blood in mice. MATERIALS & METHODS: NPs were synthesized and the mechanism of BR degradation in presence and absence of biological macromolecules were characterized in vitro. To test the in vivo BR degradation ability of NPs, CCl4-intoxicated mice were intraperitoneally injected with NPs. RESULTS: We demonstrated ultrahigh efficacy of the NPs in symptomatic treatment of hyperbilirubinemia for rapid reduction of BR in mice compared with conventional medicine silymarin without any toxicological implications. CONCLUSION: These findings may pave the way for practical clinical use of the NPs as safe medication of hyperbilirubinemia in human subjects.


Subject(s)
Hyperbilirubinemia/drug therapy , Manganese Compounds/therapeutic use , Nanoparticles , Oxides/therapeutic use , Animals , Circular Dichroism , Hyperbilirubinemia/pathology , Mice , Surface Properties
9.
J Biomed Opt ; 20(6): 067001, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26052974

ABSTRACT

Jaundice is one of the notable markers of liver malfunction in our body, revealing a significant rise in the concentration of an endogenous yellow pigment bilirubin. We have described a method for measuring the optical spectrum of our conjunctiva and derived pigment concentration by using diffused reflection measurement. The method uses no prior model and is expected to work across the races (skin color) encompassing a wide range of age groups. An optical fiber-based setup capable of measuring the conjunctival absorption spectrum from 400 to 800 nm is used to monitor the level of bilirubin and is calibrated with the value measured from blood serum of the same human subject. We have also developed software in the LabVIEW platform for use in online monitoring of bilirubin levels in human subjects by nonexperts. The results demonstrate that relative absorption at 460 and 600 nm has a distinct correlation with that of the bilirubin concentration measured from blood serum. Statistical analysis revealed that our proposed method is in agreement with the conventional biochemical method. The innovative noncontact, low-cost technique is expected to have importance in monitoring jaundice in developing/underdeveloped countries, where the inexpensive diagnosis of jaundice with minimally trained manpower is obligatory.


Subject(s)
Jaundice/diagnosis , Jaundice/pathology , Monitoring, Physiologic/methods , Optical Imaging/methods , Software , Adult , Bilirubin/analysis , Conjunctiva/pathology , Equipment Design , Humans , Linear Models , Middle Aged , Monitoring, Physiologic/instrumentation , Optical Imaging/instrumentation , Reproducibility of Results
10.
J Phys Chem A ; 118(22): 3934-43, 2014 Jun 05.
Article in English | MEDLINE | ID: mdl-24814086

ABSTRACT

Vitamin B2 has been studied as a conventional antioxidant (in the dark) since its discovery in 1926. The effect of visible light on vitamin B2-containing food has a long history of scientific investigation. Although photodegradation of the vitamin producing several photoproducts is evident in certain experimental conditions, phototoxicity revealing an additional oxidative stress in the medium is also clear from some reports. Here we report the photosensitized antioxidant effect of the vitamin, which is found to be greater than 2 orders of magnitude more efficient than that in the dark condition. The photoinduced antioxidant property is apparently paradoxical compared to the reported phototoxic effect of the vitamin. Our present study unravels a unified picture underlying the difference in character of vitamin B2 under visible light irradiation. UV-vis absorption and fluorescence studies in a number of physiologically relevant nanoscopic environments (micelles and reverse micelles) reveal the antioxidant activity to a well-known oxidative stress marker 2,2-diphenyl-1-picrylhydrazyl (DPPH) as well as a phototoxicity effect resulting in self-degradation of the vitamin. Picosecond-resolved Förster resonance energy transfer (FRET) from the vitamin to the marker DPPH in the biomimetic environments clearly reveals the role of proximity of an oxidizing agent in the photoinduced effect of the vitamin. Our systematic and detailed studies unravel a simple picture of the mechanistic pathway of the photosensitized vitamin in the physiologically important environments leading to the antioxidant/phototoxicity effect of the vitamin. The excited vitamin transfers its electron to the oxidizing agent in proximity for the antioxidant effect, but otherwise it employs oxygen to generate reactive oxygen species (ROS), resulting in phototoxicity/self-degradation.


Subject(s)
Antioxidants/chemical synthesis , Light , Micelles , Photosensitizing Agents/chemistry , Riboflavin/chemistry , Antioxidants/chemistry , Biomimetic Materials/chemistry , Biphenyl Compounds/chemistry , Fluorescence , Fluorescence Resonance Energy Transfer , Kinetics , Molecular Structure , Oxygen/chemistry , Photochemical Processes , Picrates/chemistry , Reactive Oxygen Species/chemistry , Sodium Azide/chemistry
11.
Rev Sci Instrum ; 85(3): 033108, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24689565

ABSTRACT

A noninvasive or minimally invasive optical approach for theranostics, which would reinforce diagnosis, treatment, and preferably guidance simultaneously, is considered to be major challenge in biomedical instrument design. In the present work, we have developed an evanescent field-based fiber optic strategy for the potential theranostics application in hyperbilirubinemia, an increased concentration of bilirubin in the blood and is a potential cause of permanent brain damage or even death in newborn babies. Potential problem of bilirubin deposition on the hydroxylated fiber surface at physiological pH (7.4), that masks the sensing efficacy and extraction of information of the pigment level, has also been addressed. Removal of bilirubin in a blood-phantom (hemoglobin and human serum albumin) solution from an enhanced level of 77 µM/l (human jaundice >50 µM/l) to ~30 µM/l (normal level ~25 µM/l in human) using our strategy has been successfully demonstrated. In a model experiment using chromatography paper as a mimic of biological membrane, we have shown efficient degradation of the bilirubin under continuous monitoring for guidance of immediate/future course of action.


Subject(s)
Bilirubin/blood , Jaundice/blood , Models, Biological , Chromatography, Paper/instrumentation , Chromatography, Paper/methods , Humans , Spectrophotometry/instrumentation , Spectrophotometry/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...