Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Nat Struct Mol Biol ; 31(6): 861-873, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38459128

ABSTRACT

Biorientation of chromosomes during cell division is necessary for precise dispatching of a mother cell's chromosomes into its two daughters. Kinetochores, large layered structures built on specialized chromosome loci named centromeres, promote biorientation by binding and sensing spindle microtubules. One of the outer layer main components is a ten-subunit assembly comprising Knl1C, Mis12C and Ndc80C (KMN) subcomplexes. The KMN is highly elongated and docks on kinetochores and microtubules through interfaces at its opposite extremes. Here, we combine cryogenic electron microscopy reconstructions and AlphaFold2 predictions to generate a model of the human KMN that reveals all intra-KMN interfaces. We identify and functionally validate two interaction interfaces that link Mis12C to Ndc80C and Knl1C. Through targeted interference experiments, we demonstrate that this mutual organization strongly stabilizes the KMN assembly. Our work thus reports a comprehensive structural and functional analysis of this part of the kinetochore microtubule-binding machinery and elucidates the path of connections from the chromatin-bound components to the force-generating components.


Subject(s)
Cryoelectron Microscopy , Kinetochores , Microtubule-Associated Proteins , Models, Molecular , Nuclear Proteins , Humans , Kinetochores/metabolism , Kinetochores/ultrastructure , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/chemistry , Microtubule-Associated Proteins/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/chemistry , Cytoskeletal Proteins/metabolism , Cytoskeletal Proteins/chemistry , Microtubules/metabolism , Microtubules/ultrastructure , Protein Binding , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/chemistry , HeLa Cells
2.
J Biomol Struct Dyn ; : 1-14, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37902555

ABSTRACT

FKBP22, an Escherichia coli-made peptidyl-prolyl cis-trans isomerase, has shown considerable homology with Mip-like virulence factors. While the C-terminal domain of this enzyme is used for executing catalytic function and binding inhibitor, the N-terminal domain is employed for its dimerization. To precisely determine the underlying factors of FKBP22 dimerization, its structural model, developed using a suitable template, was carefully inspected. The data show that the dimeric FKBP22, like dimeric Mip proteins, has a V-like shape. Further, it dimerizes using 40 amino acid residues including Ile 9, Ile 17, Ile 42, and Ile 65. All of the above Ile residues except Ile 9 are partly conserved in the Mip-like proteins. To confirm the roles of the partly conserved Ile residues, three FKBP22 mutants, constructed by substituting them with an Ala residue, were studied as well. The results together indicate that Ile 65 has little role in maintaining the dimeric state or enzymatic activity of FKBP22. Conversely, both Ile 17 and Ile 42 are essential for preserving the structure, enzymatic activity, and dimerization ability of FKBP22. Ile 42 in particular looks more essential to FKBP22. However, none of these two Ile residues is required for binding the cognate inhibitor. Additional computational studies also indicated the change of V-shape and the dimeric state of FKBP22 due to the Ala substitution at position 42. The ways Ile 17 and Ile 42 protect the structure, function, and dimerization of FKBP22 have been discussed at length.Communicated by Ramaswamy H. Sarma.

3.
EMBO J ; 42(13): e112504, 2023 07 03.
Article in English | MEDLINE | ID: mdl-37203876

ABSTRACT

During cell division, kinetochores link chromosomes to spindle microtubules. The Ndc80 complex, a crucial microtubule binder, populates each kinetochore with dozens of copies. Whether adjacent Ndc80 complexes cooperate to promote microtubule binding remains unclear. Here we demonstrate that the Ndc80 loop, a short sequence that interrupts the Ndc80 coiled-coil at a conserved position, folds into a more rigid structure than previously assumed and promotes direct interactions between full-length Ndc80 complexes on microtubules. Mutations in the loop impair these Ndc80-Ndc80 interactions, prevent the formation of force-resistant kinetochore-microtubule attachments, and cause cells to arrest in mitosis for hours. This arrest is not due to an inability to recruit the kinetochore-microtubule stabilizing SKA complex and cannot be overridden by mutations in the Ndc80 tail that strengthen microtubule attachment. Thus, loop-mediated organization of adjacent Ndc80 complexes is crucial for stable end-on kinetochore-microtubule attachment and spindle assembly checkpoint satisfaction.


Subject(s)
Kinetochores , Microtubules , Chromosome Segregation , Kinetochores/metabolism , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Mitosis , Protein Binding , Animals
4.
J Biomol Struct Dyn ; 40(19): 9126-9143, 2022.
Article in English | MEDLINE | ID: mdl-33977860

ABSTRACT

CapF, a capsule-producing enzyme expressed by Staphylococcus aureus, binds NADPH and exists as a dimer in the aqueous solution. Many other capsule-producing virulent bacteria also express CapF orthologs. To understand the folding-unfolding mechanism of S. aureus CapF, herein a recombinant CapF (rCapF) was individually investigated using urea and guanidine hydrochloride (GdnCl). Unfolding of rCapF by both the denaturants was reversible but proceeded via the synthesis of a different number of intermediates. While two dimeric intermediates (rCapF4 and rCapF5) were formed at 0.5 M and 1.5 M GdnCl, three dimeric intermediates (rCapF1, rCapF2, and rCapF3) were produced at 1 M, 2 M, and 3 M urea, respectively. rCapF5 showed 3.6 fold less NADPH binding activity, whereas other intermediates retained full NADPH binding activity. Compared to rCapF, all of the intermediates (except rCapF3) had a compressed shape. Conversely, rCapF3 possessed a native protein-like shape. The maximum shape loss was in rCapF4 though its secondary structure remained unperturbed. Additionally, the tertiary structure and hydrophobic surface area of the intermediates neither matched with each other nor with those of the native rCapF. Of the four Trp residues in rCapF, one or more Trp residues in the intermediates may have higher solvent accessibility. Using sequence alignment and a tertiary structural model of CapF, we have demonstrated that the region around Trp 137 of CapF may be most sensitive to unfolding, whereas the NADPH binding motif carrying region at the N-terminal end of this protein may be resistant to unfolding, particularly at the low denaturant concentrations.Communicated by Ramaswamy H. Sarma.


Subject(s)
Staphylococcus aureus , Urea , Protein Denaturation , NADP/metabolism , Guanidine/pharmacology , Urea/pharmacology , Protein Folding , Kinetics , Circular Dichroism
5.
Elife ; 82019 07 16.
Article in English | MEDLINE | ID: mdl-31310234

ABSTRACT

Delivery of native or chemically modified recombinant proteins into mammalian cells shows promise for functional investigations and various technological applications, but concerns that sub-cellular localization and functional integrity of delivered proteins may be affected remain high. Here, we surveyed batch electroporation as a delivery tool for single polypeptides and multi-subunit protein assemblies of the kinetochore, a spatially confined and well-studied subcellular structure. After electroporation into human cells, recombinant fluorescent Ndc80 and Mis12 multi-subunit complexes exhibited native localization, physically interacted with endogenous binding partners, and functionally complemented depleted endogenous counterparts to promote mitotic checkpoint signaling and chromosome segregation. Farnesylation is required for kinetochore localization of the Dynein adaptor Spindly. In cells with chronically inhibited farnesyl transferase activity, in vitro farnesylation and electroporation of recombinant Spindly faithfully resulted in robust kinetochore localization. Our data show that electroporation is well-suited to deliver synthetic and chemically modified versions of functional proteins, and, therefore, constitutes a promising tool for applications in chemical and synthetic biology.


Subject(s)
Electroporation , Molecular Imaging , Recombinant Proteins/metabolism , Cell Line , Chromosomes, Human/metabolism , Farnesyltranstransferase/metabolism , Green Fluorescent Proteins/metabolism , Humans , Hydrodynamics , Kinetochores/metabolism , M Phase Cell Cycle Checkpoints , Mutation/genetics , Prenylation
6.
PLoS One ; 14(3): e0210771, 2019.
Article in English | MEDLINE | ID: mdl-30925148

ABSTRACT

Cyclophilin (Cyp), a peptidyl-prolyl cis-trans isomerase (PPIase), acts as a virulence factor in many bacteria including Staphylococcus aureus. The enzymatic activity of Cyp is inhibited by cyclosporin A (CsA), an immunosuppressive drug. To precisely determine the unfolding mechanism and the domain structure of Cyp, we have investigated a chimeric S. aureus Cyp (rCyp) using various probes. Our limited proteolysis and the consequent analysis of the proteolytic fragments indicate that rCyp is composed of one domain with a short flexible tail at the C-terminal end. We also show that the urea-induced unfolding of both rCyp and rCyp-CsA is completely reversible and proceeds via the synthesis of at least one stable intermediate. Both the secondary structure and the tertiary structure of each intermediate appears very similar to those of the corresponding native protein. Conversely, the hydrophobic surface areas of the intermediates are comparatively less. Further analyses reveal no loss of CsA binding activity in rCyp intermediate. The thermodynamic stability of rCyp was also significantly increased in the presence of CsA, recommending that this protein could be employed to screen new CsA derivatives in the future.


Subject(s)
Cyclophilins/chemistry , Cyclophilins/metabolism , Cyclosporine/pharmacology , Staphylococcus aureus/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Cyclosporine/chemistry , Protein Binding , Protein Domains , Protein Folding , Protein Structure, Secondary , Protein Structure, Tertiary , Proteolysis , Urea/pharmacology
7.
Int J Biol Macromol ; 113: 1221-1232, 2018 Jul 01.
Article in English | MEDLINE | ID: mdl-29545063

ABSTRACT

SarA, a winged-helix DNA binding protein, is a global virulence regulator in Staphylococcus aureus. The putative DNA binding region of SarA is located between amino acid residues Leu 53 and Gln 97. Previous studies have demonstrated that residues at positions 84, 88, 89, and 90 are critical for its function. To precisely understand the roles of the DNA binding residues, we have investigated nine mutants of a recombinant SarA (rSarA) along with the rSarA mutants carrying mutations at the above four positions. Of the thirteen mutants, eleven mutants show weaker DNA binding activity in vitro compared to rSarA. As noted earlier, the DNA binding affinity of rSarA was maximally affected due to the mutation at position 84 or 90. Each of the functionally-defective mutants also possesses an altered structure and stability. Additionally, the mutations at positions 84 and 90 have severely affected the formation of hydrogen (H) bonds at the interface between SarA and the cognate DNA. The mutation at position 64 also has perturbed the generation of some interface H-bonds. Therefore, the disruption of H-bonds in the protein-DNA interface and the structural alteration in the protein may be responsible for the reduced DNA binding activity of the mutants.


Subject(s)
Alanine , Amino Acid Substitution , Bacterial Proteins/metabolism , DNA, Bacterial/metabolism , Mutation , Staphylococcus aureus/metabolism , Staphylococcus aureus/pathogenicity , Trans-Activators/metabolism , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Hydrogen Bonding , Molecular Dynamics Simulation , Nucleic Acid Conformation , Protein Binding , Protein Conformation , Protein Stability , Proteolysis , Staphylococcus aureus/genetics , Structure-Activity Relationship , Trans-Activators/chemistry , Trans-Activators/genetics , Virulence
8.
Bioinformation ; 13(3): 78-85, 2017.
Article in English | MEDLINE | ID: mdl-28584448

ABSTRACT

Cyclophilins, a class of peptidyl-prolyl cis-trans isomerase (PPIase) enzymes, are inhibited by cyclosporin A (CsA), an immunosuppressive drug. Staphylococcus aureus Newman, a pathogenic bacterium, carries a gene for encoding a putative cyclophilin (SaCyp). SaCyp shows significant homology with other cyclophilins at the sequence level. A three-dimensional model structure of SaCyp harbors a binding site for CsA. To verify whether SaCyp possesses both the PPIase activity and the CsA binding ability, we have purified and investigated a recombinant SaCyp (rCyp) using various in vitro tools. Our RNase T1 refolding assay indicates that rCyp has a substantial extent of PPIase activity. rCyp that exists as a monomer in the aqueous solution is truly a cyclophilin as its catalytic activity specifically shows sensitivity to CsA. rCyp appears to bind CsA with a reasonably high affinity. Additional investigations reveal that binding of CsA to rCyp alters its structure and shape to some extent. Both rCyp and rCyp-CsA are unfolded via the formation of at least one intermediate in the presence of guanidine hydrochloride. Unfolding study also indicates that there is substantial extent of thermodynamic stabilization of rCyp in the presence of CsA as well. The data suggest that rCyp may be exploited to screen the new antimicrobial agents in the future.

9.
PLoS One ; 11(3): e0151426, 2016.
Article in English | MEDLINE | ID: mdl-26989900

ABSTRACT

Triton X-100 (TX-100), a useful non-ionic surfactant, reduced the methicillin resistance in Staphylococcus aureus significantly. Many S. aureus proteins were expressed in the presence of TX-100. SarA, one of the TX-100-induced proteins, acts as a global virulence regulator in S. aureus. To understand the effects of TX-100 on the structure, and function of SarA, a recombinant S. aureus SarA (rSarA) and its derivative (C9W) have been investigated in the presence of varying concentrations of this surfactant using various probes. Our data have revealed that both rSarA and C9W bind to the cognate DNA with nearly similar affinity in the absence of TX-100. Interestingly, their DNA binding activities have been significantly increased in the presence of pre-micellar concentration of TX-100. The increase of TX-100 concentrations to micellar or post-micellar concentration did not greatly enhance their activities further. TX-100 molecules have altered the secondary and tertiary structures of both proteins to some extents. Size of the rSarA-TX-100 complex appears to be intermediate to those of rSarA and TX-100. Additional analyses show a relatively moderate interaction between C9W and TX-100. Binding of TX-100 to C9W has, however, occurred by a cooperative pathway particularly at micellar and higher concentrations of this surfactant. Taken together, TX-100-induced structural alteration of rSarA and C9W might be responsible for their increased DNA binding activity. As TX-100 has stabilized the somewhat weaker SarA-DNA complex effectively, it could be used to study its structure in the future.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Octoxynol/chemistry , Surface-Active Agents/chemistry , Bacterial Proteins/genetics , Circular Dichroism , DNA/metabolism , Deoxyribonuclease I/chemistry , Deoxyribonuclease I/metabolism , Mutation , Octoxynol/metabolism , Protein Structure, Secondary , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Spectrometry, Fluorescence , Staphylococcus aureus/pathogenicity , Surface-Active Agents/metabolism , Tryptophan/genetics
10.
Int J Biol Macromol ; 87: 273-80, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26944658

ABSTRACT

The FKBP22 and the related peptidyl-prolyl cis-trans isomerases dimerize using their N-terminal domains. Conversely, their C-terminal domains possess both the substrate and inhibitor binding sites. To delineate the roles of a conserved Tyr residue at their N-terminal domains, we have studied a FKBP22 mutant that carries an Ala in place of the conserved Tyr at position 15. We have demonstrated that the Tyr 15 of FKBP22 is indispensable for preserving its dimerization ability, catalytic activity, and structure. The residue, however, little contributed to its inhibitor binding ability and stability. The mode of action of Tyr 15 has been discussed at length.


Subject(s)
Conserved Sequence , Tacrolimus Binding Proteins/chemistry , Tacrolimus Binding Proteins/metabolism , Tyrosine/metabolism , Amino Acid Substitution , Enzyme Stability , Escherichia coli/enzymology , Molecular Dynamics Simulation , Mutation , Protein Multimerization , Protein Structure, Quaternary , Protein Unfolding , Tacrolimus Binding Proteins/genetics
11.
PLoS One ; 10(3): e0122168, 2015.
Article in English | MEDLINE | ID: mdl-25822635

ABSTRACT

SarA, a Staphylococcus aureus-specific dimeric protein, modulates the expression of numerous proteins including various virulence factors. Interestingly, S. aureus synthesizes multiple SarA paralogs seemingly for optimizing the expression of its virulence factors. To understand the domain structure/flexibility and the folding/unfolding mechanism of the SarA protein family, we have studied a recombinant SarA (designated rSarA) using various in vitro probes. Limited proteolysis of rSarA and the subsequent analysis of the resulting protein fragments suggested it to be a single-domain protein with a long, flexible C-terminal end. rSarA was unfolded by different mechanisms in the presence of different chemical and physical denaturants. While urea-induced unfolding of rSarA occurred successively via the formation of a dimeric and a monomeric intermediate, GdnCl-induced unfolding of this protein proceeded through the production of two dimeric intermediates. The surface hydrophobicity and the structures of the intermediates were not identical and also differed significantly from those of native rSarA. Of the intermediates, the GdnCl-generated intermediates not only possessed a molten globule-like structure but also exhibited resistance to dissociation during their unfolding. Compared to the native rSarA, the intermediate that was originated at lower GdnCl concentration carried a compact shape, whereas, other intermediates owned a swelled shape. The chemical-induced unfolding, unlike thermal unfolding of rSarA, was completely reversible in nature.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Protein Unfolding , Staphylococcus aureus/metabolism , Bacterial Proteins/genetics , Guanidine/pharmacology , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Multigene Family , Protein Conformation , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Temperature , Urea/pharmacology
12.
Biochim Open ; 1: 28-39, 2015.
Article in English | MEDLINE | ID: mdl-29632827

ABSTRACT

FKBP22, an Escherichia coli-specific peptidyl-prolyl cis-trans isomerase, shows substantial homology with the Mip-like virulence factors. Mip-like proteins are homodimeric and possess a V-shaped conformation. Their N-terminal domains form dimers, whereas their C-terminal domains bind protein/peptide substrates and distinct inhibitors such as rapamycin and FK506. Interestingly, the two domains of the Mip-like proteins are separated by a lengthy, protease-susceptible α-helix. To delineate the structural requirement of this domain-connecting region in Mip-like proteins, we have investigated a recombinant FKBP22 (rFKBP22) and its three point mutants I65P, V72P and A82P using different probes. Each mutant harbors a Pro substitution mutation at a distinct location in the hinge region. We report that the three mutants are not only different from each other but also different from rFKBP22 in structure and activity. Unlike rFKBP22, the three mutants were unfolded by a non-two state mechanism in the presence of urea. In addition, the stabilities of the mutants, particularly I65P and V72P, differed considerably from that of rFKBP22. Conversely, the rapamycin binding affinity of no mutant was different from that of rFKBP22. Of the mutants, I65P showed the highest levels of structural/functional loss and dissociated partly in solution. Our computational study indicated a severe collapse of the V-shape in I65P due to the anomalous movement of its C-terminal domains. The α-helical nature of the domain-connecting region is, therefore, critical for the Mip-like proteins.

13.
PLoS One ; 9(7): e102891, 2014.
Article in English | MEDLINE | ID: mdl-25072141

ABSTRACT

FKBP22, an Escherichia coli-encoded PPIase (peptidyl-prolyl cis-trans isomerase) enzyme, shares substantial identity with the Mip-like pathogenic factors, caries two domains, exists as a dimer in solution and binds some immunosuppressive drugs (such as FK506 and rapamycin) using its C-terminal domain (CTD). To understand the effects of these drugs on the structure and stability of the Mip-like proteins, rFKBP22 (a chimeric FKBP22) and CTD+ (a CTD variant) have been studied in the presence and absence of rapamycin using different probes. We demonstrated that rapamycin binding causes minor structural alterations of rFKBP22 and CTD+. Both the proteins (equilibrated with rapamycin) were unfolded via the formation of intermediates in the presence of urea. Further study revealed that thermal unfolding of both rFKBP22 and rapamycin-saturated rFKBP22 occurred by a three-state mechanism with the synthesis of intermediates. Intermediate from the rapamycin-equilibrated rFKBP22 was formed at a comparatively higher temperature. All intermediates carried substantial extents of secondary and tertiary structures. Intermediate resulted from the thermal unfolding of rFKBP22 existed as the dimers in solution, carried an increased extent of hydrophobic surface and possessed relatively higher rapamycin binding activity. Despite the formation of intermediates, both the thermal and urea-induced unfolding reactions were reversible in nature. Unfolding studies also indicated the considerable stabilization of both proteins by rapamycin binding. The data suggest that rFKBP22 or CTD+ could be exploited to screen the rapamycin-like inhibitors in the future.


Subject(s)
Enzyme Inhibitors/pharmacology , Peptidylprolyl Isomerase/antagonists & inhibitors , Peptidylprolyl Isomerase/chemistry , Protein Conformation/drug effects , Protein Interaction Domains and Motifs/drug effects , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Protein Binding , Protein Unfolding/drug effects , Proteolysis , Sirolimus/chemistry , Sirolimus/metabolism , Sirolimus/pharmacology , Tacrolimus Binding Proteins/antagonists & inhibitors , Tacrolimus Binding Proteins/chemistry , Thermodynamics , Thermolysin/metabolism , Urea/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...