Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 115(43): 10995-10999, 2018 10 23.
Article in English | MEDLINE | ID: mdl-30297407

ABSTRACT

Long-distance migrants, including Pacific salmon (Oncorhynchus spp), can use geomagnetic information to navigate. We tested the hypothesis that a "magnetic map" (i.e., an ability to extract positional information from Earth's magnetic field) also exists in a population of salmon that do not undertake oceanic migrations. This study examined juvenile Atlantic salmon (Salmo salar) originally from a nonanadromous population in Maine transferred ∼60 years ago to a lake in central Oregon. We exposed juveniles to magnetic displacements representative of locations at the latitudinal boundaries of the Pacific salmon oceanic range in the North Pacific and at the periphery of their ancestral oceanic range in the North Atlantic. Orientation differed among the magnetic treatments, indicating that Atlantic salmon detect map information from the geomagnetic field. Despite no recent history of ocean migration, these fish displayed adaptive orientation responses similar to those observed in native Pacific salmonids. These findings indicate that use of map information from the geomagnetic field is a shared ancestral character in the family Salmonidae and is not restricted to populations with anadromous life histories. Lastly, given that Atlantic salmon are transported throughout the world for capture fisheries and aquaculture, such a robust navigational system is of some concern. Escaped individuals may have greater potential to successfully navigate, and thus invade, introduced habitats than previously suspected.


Subject(s)
Salmo salar/physiology , Animal Migration/physiology , Animals , Aquaculture/methods , Magnetics/methods , Maine , Oregon , Pacific Ocean
2.
Biol Lett ; 14(2)2018 02.
Article in English | MEDLINE | ID: mdl-29438054

ABSTRACT

Organisms use a variety of environmental cues to orient their movements in three-dimensional space. Here, we show that the upward movement of young Chinook salmon (Oncorhynchus tshawytscha) emerging from gravel nests is influenced by the geomagnetic field. Fish in the ambient geomagnetic field travelled farther upwards through substrate than did fish tested in a field with the vertical component inverted. This suggests that the magnetic field is one of several factors that influences emergence from the gravel, possibly by serving as an orientation cue that helps fish determine which way is up. Moreover, our work indicates that the Oncorhynchus species are sensitive to the magnetic field throughout their life cycles, and that it guides their movements across a range of spatial scales and habitats.


Subject(s)
Behavior, Animal/physiology , Magnetic Phenomena , Salmon/physiology , Animals , Orientation, Spatial/physiology
3.
Sci Rep ; 7: 43131, 2017 02 21.
Article in English | MEDLINE | ID: mdl-28220895

ABSTRACT

What did coral reef ecosystems look like before human impacts became pervasive? Early efforts to reconstruct baselines resulted in the controversial suggestion that pristine coral reefs have inverted trophic pyramids, with disproportionally large top predator biomass. The validity of the coral reef inverted trophic pyramid has been questioned, but until now, was not resolved empirically. We use data from an eight-year tag-recapture program with spatially explicit, capture-recapture models to re-examine the population size and density of a key top predator at Palmyra atoll, the same location that inspired the idea of inverted trophic biomass pyramids in coral reef ecosystems. Given that animal movement is suspected to have significantly biased early biomass estimates of highly mobile top predators, we focused our reassessment on the most mobile and most abundant predator at Palmyra, the grey reef shark (Carcharhinus amblyrhynchos). We estimated a density of 21.3 (95% CI 17.8, 24.7) grey reef sharks/km2, which is an order of magnitude lower than the estimates that suggested an inverted trophic pyramid. Our results indicate that the trophic structure of an unexploited reef fish community is not inverted, and that even healthy top predator populations may be considerably smaller, and more precarious, than previously thought.


Subject(s)
Coral Reefs , Ecosystem , Population Density , Sharks/growth & development , Animals
4.
Epilepsia ; 53(1): 134-46, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22150444

ABSTRACT

PURPOSE: sec-Butyl-propylacetamide (SPD) is a one-carbon homolog of valnoctamide (VCD), a central nervous system (CNS)-active amide derivative of valproic acid (VPA) currently in phase II clinical trials. The study reported herein evaluated the anticonvulsant activity of SPD in a battery of rodent seizure and epilepsy models and assessed its efficacy in rat and guinea pig models of status epilepticus (SE) and neuroprotection in an organotypic hippocampal slice model of excitotoxic cell death. METHODS: The anticonvulsant activity of SPD was evaluated in several rodent seizure and epilepsy models, including maximal electroshock (MES), 6-Hz psychomotor; subcutaneous (s.c.) metrazol-, s.c. picrotoxin, s.c. bicuculline, and audiogenic, corneal, and hippocampal kindled seizures following intraperitoneal administration. Results obtained with SPD are discussed in relationship to those obtained with VPA and VCD. SPD was also evaluated for its ability to block benzodiazepine-resistant SE induced by pilocarpine (rats) and soman (rats and guinea pigs) following intraperitoneal administration. SPD was tested for its ability to block excitotoxic cell death induced by the glutamate agonists N-methyl-D-aspartate (NMDA) and kainic acid (KA) using organotypic hippocampal slices and SE-induced hippocampal cell death using FluoroJade B staining. The cognitive function of SPD-treated rats that were protected against pilocarpine-induced convulsive SE was examined 10-14 days post-SE using the Morris water maze (MWM). The relationship between the pharmacokinetic profile of SPD and its efficacy against soman-induced SE was evaluated in two parallel studies following SPD (60 mg/kg, i.p.) administration in the soman SE rat model. KEY FINDINGS: SPD was highly effective and displayed a wide protective index (PI = median neurotoxic dose/median effective dose [TD(50)/ED(50)]) in the standardized seizure and epilepsy models employed. The wide PI values of SPD demonstrate that it is effective at doses well below those that produce behavioral impairment. Unlike VCD, SPD also displayed anticonvulsant activity in the rat pilocarpine model of SE. Thirty minutes after the induction of SE, the calculated rat ED(50) for SPD against convulsive SE in this model was 84 mg/kg. SPD was not neuroprotective in the organotypic hippocampal slice preparation; however, it did display hippocampal neuroprotection in both SE models and cognitive sparing in the MWM, which was associated with its antiseizure effect against pilocarpine-induced SE. When administered 20 and 40 min after SE onset, SPD (100-174 mg/kg) produced long-lasting efficacy (e.g., 4-8 h) against soman-induced convulsive and electrographic SE in both rats and guinea pigs. SPD ED(50) values in guinea pigs were 67 and 92 mg/kg when administered at SE onset or 40 min after SE onset, respectively. Assuming linear pharmacokinetics (PK), the PK-PD (pharmacodynamic) results (rats) suggests that effective SPD plasma levels ranged between 8 and 40 mg/L (20 min after the onset of soman-induced seizures) and 12-50 mg/L (40 min after the onset of soman-induced seizures). The time to peak (t(max)) pharmacodynamic effect (PD-t(max)) occurred after the PK-t(max), suggesting that SPD undergoes slow distribution to extraplasmatic sites, which is likely responsible for antiseizure activity of SPD. SIGNIFICANCE: The results demonstrate that SPD is a broad-spectrum antiseizure compound that blocks SE induced by pilocarpine and soman and affords in vivo neuroprotection that is associated with cognitive sparing. Its activity against SE is superior to that of diazepam in terms of rapid onset, potency, and its effect on animal mortality and functional improvement.


Subject(s)
Anticonvulsants/pharmacology , Anticonvulsants/pharmacokinetics , Seizures/drug therapy , Status Epilepticus/drug therapy , Valproic Acid/chemistry , Amides/chemistry , Amides/pharmacokinetics , Amides/pharmacology , Animals , Anticonvulsants/administration & dosage , Disease Models, Animal , Dose-Response Relationship, Drug , Female , Guinea Pigs , Hippocampus/drug effects , Male , Mice , Neurons/drug effects , Neuroprotective Agents , Rats , Rats, Sprague-Dawley , Time Factors , Treatment Outcome , Valproic Acid/analogs & derivatives , Valproic Acid/pharmacokinetics , Valproic Acid/pharmacology
5.
J Biol Chem ; 280(11): 10548-55, 2005 Mar 18.
Article in English | MEDLINE | ID: mdl-15644320

ABSTRACT

We examined the function of LIP5 in mammalian cells, because the yeast homologue Vta1p was recently identified as a protein required for multivesicular body (MVB) formation. LIP5 is predominantly a cytosolic protein. Depletion of LIP5 by small inhibitory RNA (siRNA) does not affect the distribution or morphology of early endosomes, lysosomes, or Golgi but does reduce the degradation of internalized epidermal growth factor receptor (EGFR), with EGFR accumulating in intracellular vesicles. Depletion of LIP5 by siRNA also decreases human immunodeficiency virus type 1 (HIV-1) budding by 70%. We identify CHMP5 as a LIP5-binding protein and show that CHMP5 is primarily cytosolic. Depletion of CHMP5 by siRNA does not affect the distribution or morphology of early endosomes, lysosomes, or Golgi but does result in reduced degradation of the EGFR similar to silencing of LIP5. Surprisingly, CHMP5 depletion results in an increase in the release of infectious HIV-1 particles. Overexpression of CHMP5 with a large carboxyl-terminal epitope affects the distribution of both early and late endocytic compartments, whereas overexpression of LIP5 does not alter the endocytic pathway. Comparison of overexpression and siRNA phenotypes suggests that the roles of these proteins in MVB formation may be more specifically addressed using RNA interference and that both LIP5 and CHMP5 function in MVB sorting, whereas only LIP5 is required for HIV release.


Subject(s)
Carrier Proteins/physiology , Endosomes/virology , HIV-1/metabolism , Animals , Blotting, Western , COS Cells , Carrier Proteins/chemistry , Cell Line , Cloning, Molecular , Cytosol/metabolism , Electrophoresis, Polyacrylamide Gel , Endocytosis , Endosomal Sorting Complexes Required for Transport , Endosomes/metabolism , Epitopes/chemistry , Fibroblasts/virology , Golgi Apparatus/metabolism , Green Fluorescent Proteins/metabolism , HeLa Cells , Humans , Lysosomes/metabolism , Mass Spectrometry , Mice , Microscopy, Confocal , Phenotype , RNA Interference , RNA, Small Interfering/metabolism , Time Factors , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...