Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 124(25): 255101, 2020 Jun 26.
Article in English | MEDLINE | ID: mdl-32639771

ABSTRACT

A familiar problem in space and astrophysical plasmas is to understand how dissipation and heating occurs. These effects are often attributed to the cascade of broadband turbulence which transports energy from large scale reservoirs to small scale kinetic degrees of freedom. When collisions are infrequent, local thermodynamic equilibrium is not established. In this case the final stage of energy conversion becomes more complex than in the fluid case, and both pressure-dilatation and pressure strain interactions (Pi-D≡-Π_{ij}D_{ij}) become relevant and potentially important. Pi-D in plasma turbulence has been studied so far primarily using simulations. The present study provides a statistical analysis of Pi-D in the Earth's magnetosheath using the unique measurement capabilities of the Magnetospheric Multiscale (MMS) mission. We find that the statistics of Pi-D in this naturally occurring plasma environment exhibit strong resemblance to previously established fully kinetic simulations results. The conversion of energy is concentrated in space and occurs near intense current sheets, but not within them. This supports recent suggestions that the chain of energy transfer channels involves regional, rather than pointwise, correlations.

2.
Phys Rev Lett ; 124(22): 225101, 2020 Jun 05.
Article in English | MEDLINE | ID: mdl-32567898

ABSTRACT

We present estimates of the turbulent energy-cascade rate derived from a Hall-magnetohydrodynamic (MHD) third-order law. We compute the contribution from the Hall term and the MHD term to the energy flux. Magnetospheric Multiscale (MMS) data accumulated in the magnetosheath and the solar wind are compared with previously established simulation results. Consistent with the simulations, we find that at large (MHD) scales, the MMS observations exhibit a clear inertial range dominated by the MHD flux. In the subion range, the cascade continues at a diminished level via the Hall term, and the change becomes more pronounced as the plasma beta increases. Additionally, the MHD contribution to interscale energy transfer remains important at smaller scales than previously thought. Possible reasons are offered for this unanticipated result.

3.
Phys Plasmas ; 25(2)2018.
Article in English | MEDLINE | ID: mdl-30344429

ABSTRACT

Turbulence is a fundamental physical process through which energy injected into a system at large scales cascades to smaller scales. In collisionless plasmas, turbulence provides a critical mechanism for dissipating electromagnetic energy. Here we present observations of plasma fluctuations in low-ß turbulence using data from NASA's Magnetospheric Multiscale mission in Earth's magnetosheath. We provide constraints on the partitioning of turbulent energy density in the fluid, ion-kinetic, and electron-kinetic ranges. Magnetic field fluctuations dominated the energy density spectrum throughout the fluid and ion-kinetic ranges, consistent with previous observations of turbulence in similar plasma regimes. However, at scales shorter than the electron inertial length, fluctuation power in electron kinetic energy significantly exceeded that of the magnetic field, resulting in an electron-motion-regulated cascade at small scales. This dominance should be highly relevant for the study of turbulence in highly magnetized laboratory and astrophysical plasmas.

4.
Rev Sci Instrum ; 89(7): 073301, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30068116

ABSTRACT

Microchannel plate (MCP) detectors provide a mechanism to produce a measureable current pulse (∼0.1 mA over several nanoseconds) when stimulated by a single incident particle or photon. Reductions of the device's amplification factor (i.e., gain) due to high incident particle flux can lead to significant degradation of detection system performance. Here we develop a parameterized model for the variation of MCP gain with incident flux. This model provides a framework with which to quantify the limits of high-flux MCP operation. We then compare the predictions of this model to laboratory measurements of an MCP's response to a pulsed charged particle beam. Finally, we demonstrate that through integration of the MCP output current in pulsed operation, effective count rates up to ∼1 GHz can be achieved, more than an order of magnitude increase over conventional counting techniques used for spaceflight applications.

5.
Nat Commun ; 8: 14719, 2017 03 31.
Article in English | MEDLINE | ID: mdl-28361881

ABSTRACT

Alfvén waves are fundamental plasma wave modes that permeate the universe. At small kinetic scales, they provide a critical mechanism for the transfer of energy between electromagnetic fields and charged particles. These waves are important not only in planetary magnetospheres, heliospheres and astrophysical systems but also in laboratory plasma experiments and fusion reactors. Through measurement of charged particles and electromagnetic fields with NASA's Magnetospheric Multiscale (MMS) mission, we utilize Earth's magnetosphere as a plasma physics laboratory. Here we confirm the conservative energy exchange between the electromagnetic field fluctuations and the charged particles that comprise an undamped kinetic Alfvén wave. Electrons confined between adjacent wave peaks may have contributed to saturation of damping effects via nonlinear particle trapping. The investigation of these detailed wave dynamics has been unexplored territory in experimental plasma physics and is only recently enabled by high-resolution MMS observations.

SELECTION OF CITATIONS
SEARCH DETAIL
...