Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 19130, 2019 12 13.
Article in English | MEDLINE | ID: mdl-31836723

ABSTRACT

The PARP enzyme and scaffolding protein tankyrase (TNKS, TNKS2) uses its ankyrin repeat clusters (ARCs) to bind a wide range of proteins and thereby controls diverse cellular functions. A number of these are implicated in cancer-relevant processes, including Wnt/ß-catenin signalling, Hippo signalling and telomere maintenance. The ARCs recognise a conserved tankyrase-binding peptide motif (TBM). All currently available tankyrase inhibitors target the catalytic domain and inhibit tankyrase's poly(ADP-ribosyl)ation function. However, there is emerging evidence that catalysis-independent "scaffolding" mechanisms contribute to tankyrase function. Here we report a fragment-based screening programme against tankyrase ARC domains, using a combination of biophysical assays, including differential scanning fluorimetry (DSF) and nuclear magnetic resonance (NMR) spectroscopy. We identify fragment molecules that will serve as starting points for the development of tankyrase substrate binding antagonists. Such compounds will enable probing the scaffolding functions of tankyrase, and may, in the future, provide potential alternative therapeutic approaches to inhibiting tankyrase activity in cancer and other conditions.


Subject(s)
Ankyrin Repeat , Fluorometry/methods , Magnetic Resonance Spectroscopy/methods , Tankyrases/chemistry , Arginine/chemistry , Binding Sites , Catalytic Domain , Computer Simulation , Escherichia coli/enzymology , Humans , Kinetics , Ligands , Mutation , Peptides/chemistry , Protein Binding , Wnt Signaling Pathway
2.
Biomol NMR Assign ; 13(1): 255-260, 2019 04.
Article in English | MEDLINE | ID: mdl-30847846

ABSTRACT

Tankyrases are poly(ADP-ribose)polymerases (PARPs) which recognize their substrates via their ankyrin repeat cluster (ARC) domains. The human tankyrases (TNKS/TNKS2) contain five ARCs in their extensive N-terminal region; of these, four bind peptides present within tankyrase interactors and substrates. These short, linear segments, known as tankyrase-binding motifs (TBMs), contain some highly conserved features: an arginine at position 1, which occupies a predominantly acidic binding site, and a glycine at position 6 that is sandwiched between two aromatic side chains on the surface of the ARC domain. Tankyrases are involved in a multitude of biological functions, amongst them Wnt/ß-catenin signaling, the maintenance of telomeres, glucose metabolism, spindle formation, the DNA damage response and Hippo signaling. As many of these are relevant to human disease, tankyrase is an important target candidate for drug development. With the emergence of non-catalytic (scaffolding) functions of tankyrase, it seems attractive to interfere with ARC function rather than the enzymatic activity of tankyrase. To study the mechanism of ARC-dependent recruitment of tankyrase binders and enable protein-observed NMR screening methods, we have as the first step obtained a full backbone and partial side chain assignment of TNKS2 ARC4. The assignment highlights some of the unusual structural features of the ARC domain.


Subject(s)
Nuclear Magnetic Resonance, Biomolecular , Tankyrases/chemistry , Humans , Protein Domains , Protein Structure, Secondary , Solutions
3.
Br J Pharmacol ; 174(24): 4611-4636, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28910490

ABSTRACT

The Wnt/ß-catenin signalling pathway is pivotal for stem cell function and the control of cellular differentiation, both during embryonic development and tissue homeostasis in adults. Its activity is carefully controlled through the concerted interactions of concentration-limited pathway components and a wide range of post-translational modifications, including phosphorylation, ubiquitylation, sumoylation, poly(ADP-ribosyl)ation (PARylation) and acetylation. Regulation of Wnt/ß-catenin signalling by PARylation was discovered relatively recently. The PARP tankyrase PARylates AXIN1/2, an essential central scaffolding protein in the ß-catenin destruction complex, and targets it for degradation, thereby fine-tuning the responsiveness of cells to the Wnt signal. The past few years have not only seen much progress in our understanding of the molecular mechanisms by which PARylation controls the pathway but also witnessed the successful development of tankyrase inhibitors as tool compounds and promising agents for the therapy of Wnt-dependent dysfunctions, including colorectal cancer. Recent work has hinted at more complex roles of tankyrase in Wnt/ß-catenin signalling as well as challenges and opportunities in the development of tankyrase inhibitors. Here we review some of the latest advances in our understanding of tankyrase function in the pathway and efforts to modulate tankyrase activity to re-tune Wnt/ß-catenin signalling in colorectal cancer cells. LINKED ARTICLES: This article is part of a themed section on WNT Signalling: Mechanisms and Therapeutic Opportunities. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.24/issuetoc.


Subject(s)
Colorectal Neoplasms/metabolism , Poly ADP Ribosylation , Tankyrases/metabolism , Wnt Signaling Pathway , Animals , Antineoplastic Agents/pharmacology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Enzyme Inhibitors/pharmacology , Humans , Poly ADP Ribosylation/drug effects , Tankyrases/antagonists & inhibitors , Wnt Signaling Pathway/drug effects
4.
Methods Mol Biol ; 1608: 445-473, 2017.
Article in English | MEDLINE | ID: mdl-28695526

ABSTRACT

The poly(ADP-ribose)polymerase (PARP) enzyme tankyrase (TNKS/ARTD5, TNKS2/ARTD6) uses its ankyrin repeat clusters (ARCs) to recognize degenerate peptide motifs in a wide range of proteins, thereby recruiting such proteins and their complexes for scaffolding and/or poly(ADP-ribosyl)ation. Here, we provide guidance for predicting putative tankyrase-binding motifs, based on the previously delineated peptide sequence rules and existing structural information. We present a general method for the expression and purification of tankyrase ARCs from Escherichia coli and outline a fluorescence polarization assay to quantitatively assess direct ARC-TBM peptide interactions. We provide a basic protocol for evaluating binding and poly(ADP-ribosyl)ation of full-length candidate interacting proteins by full-length tankyrase in mammalian cells.


Subject(s)
Poly ADP Ribosylation/physiology , Tankyrases/chemistry , Tankyrases/metabolism , Animals , Binding Sites , Humans , Poly ADP Ribosylation/genetics , Protein Binding/genetics , Protein Binding/physiology , Telomere/genetics , Telomere/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...