Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
PLoS Pathog ; 19(6): e1010767, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37279255

ABSTRACT

The inflammatory cytokine tumor necrosis factor (TNF) is necessary for host defense against many intracellular pathogens, including Legionella pneumophila. Legionella causes the severe pneumonia Legionnaires' disease and predominantly affects individuals with a suppressed immune system, including those receiving therapeutic TNF blockade to treat autoinflammatory disorders. TNF induces pro-inflammatory gene expression, cellular proliferation, and survival signals in certain contexts, but can also trigger programmed cell death in others. It remains unclear, however, which of the pleiotropic functions of TNF mediate control of intracellular bacterial pathogens like Legionella. In this study, we demonstrate that TNF signaling licenses macrophages to die rapidly in response to Legionella infection. We find that TNF-licensed cells undergo rapid gasdermin-dependent, pyroptotic death downstream of inflammasome activation. We also find that TNF signaling upregulates components of the inflammasome response, and that the caspase-11-mediated non-canonical inflammasome is the first inflammasome to be activated, with caspase-1 and caspase-8 mediating delayed pyroptotic death. We find that all three caspases are collectively required for optimal TNF-mediated restriction of bacterial replication in macrophages. Furthermore, caspase-8 is required for control of pulmonary Legionella infection. These findings reveal a TNF-dependent mechanism in macrophages for activating rapid cell death that is collectively mediated by caspases-1, -8, and -11 and subsequent restriction of Legionella infection.


Subject(s)
Legionnaires' Disease , Pneumonia , Mice , Animals , Humans , Caspase 1/metabolism , Caspase 8/metabolism , Inflammasomes , Mice, Knockout , Macrophages , Caspases/metabolism , Cell Death , Tumor Necrosis Factor-alpha/metabolism , Pneumonia/metabolism , Licensure
3.
Malar J ; 10: 97, 2011 Apr 18.
Article in English | MEDLINE | ID: mdl-21501513

ABSTRACT

BACKGROUND: Human populations that are naturally subjected to Plasmodium infection do not acquire complete protection against the liver stage of this parasite despite prolonged and frequent exposure. However, sterile immunity against Plasmodium liver stage can be achieved after repeated exposure to radiation attenuated sporozoites. The reasons for this different response remain largely unknown, but a suppressive effect of blood stage Plasmodium infection has been proposed as a cause for the lack of liver stage protection. METHODS: Using Plasmodium yoelii 17XNL, the response generated in mice subjected to daily infective bites from normal or irradiated mosquitoes was compared. The effect of daily-infected mosquito bites on mice that were previously immunized against P. yoelii liver stage was also studied. RESULTS: It was observed that while the bites of normal infected mosquitoes do not generate strong antibody responses and protection, the bites of irradiated mosquitoes result in high levels of anti-sporozoite antibodies and protection against liver stage Plasmodium infection. Exposure to daily infected mosquito bites did not eliminate the protection acquired previously with a experimental liver stage vaccine. CONCLUSIONS: Liver stage immunity generated by irradiated versus normal P. yoelii infected mosquitoes is essentially different, probably because of the blood stage infection that follows normal mosquito bites, but not irradiated. While infective mosquito bites do not induce a protective liver stage response, they also do not interfere with previously acquired liver stage protective responses, even if they induce a complete blood stage infection. Considering that the recently generated anti-malaria vaccines induce only partial protection against infection, it is encouraging that, at least in mouse models, immunity is not negatively affected by subsequent exposure and infection with the parasite.


Subject(s)
Culicidae/parasitology , Insect Bites and Stings/complications , Liver/parasitology , Malaria/immunology , Malaria/prevention & control , Plasmodium yoelii/immunology , Plasmodium yoelii/pathogenicity , Animals , Culicidae/radiation effects , Disease Models, Animal , Female , Gamma Rays , Liver/immunology , Malaria/parasitology , Mice , Plasmodium yoelii/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...