Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Pollut Bull ; 201: 116256, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38521000

ABSTRACT

We report the first empirical confirmation of the co-occurrence of organophosphate esters (OPEs) additives and microplastics (MPs) in benthic compartments from the Loire estuary. Higher median concentrations of MPs (3387 items/kg dw), ∑13tri-OPEs (12.0 ng/g dw) and ∑4di-OPEs (0.7 ng/g dw) were measured in intertidal sediments with predominance of fine particles, and under higher anthropogenic pressures, with a general lack of seasonality. Contrarily, Scrobicularia plana showed up to 4-fold higher ∑tri-OPE concentrations in summer (reaching 37.0 ng/g dw), and similar spatial distribution. Polyethylene predominated in both compartments. Tris(2-ethylhexyl) phosphate (TEHP), its degradation metabolite (BEHP) and tris-(2-chloro, 1-methylethyl) phosphate (TCIPP) were the most abundant OPEs in sediments, while TCIPP predominated in S. plana. The biota-sediment accumulation factors suggest bioaccumulation potential for chlorinated-OPEs, with higher exposure in summer. No significant correlations were generally found between OPEs and MPs in sediments suggesting a limited role of MPs as in-situ source of OPEs.


Subject(s)
Environmental Monitoring , Flame Retardants , Microplastics , Plastics , Estuaries , Flame Retardants/analysis , Plasticizers/analysis , Organophosphates/analysis , Phosphates , Esters/analysis , China
3.
Mar Pollut Bull ; 184: 114180, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36183511

ABSTRACT

Deep-sea ecosystems play a key role in the cycling and vertical transfer of matter and energy in oceans. Although the contamination of deep-sea demersal and benthic organisms by persistent organic pollutants has been proven, deep pelagic species have been far less studied. To fill these gaps, we studied the occurrence of a large variety of hydrophobic organic contaminants including polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), legacy and alternative brominated flame retardants (BFRs) and per- and polyfluoroalkyl substances (PFASs) in crustaceans and fish species collected in the Bay of Biscay, northeast Atlantic. The results highlighted the global predominance of PCBs in fish, followed by OCPs, PFASs and PBDEs, with highly variable concentrations among species. Most of the chlorinated or brominated contaminants showed increasing concentrations with increasing δ15N values, while most PFASs showed inverse trends. The contaminant profiles and diagnostic ratios revealed species-specific metabolic capacities and peculiar contribution of highly-brominated BFRs.


Subject(s)
Flame Retardants , Fluorocarbons , Hydrocarbons, Chlorinated , Pesticides , Polychlorinated Biphenyls , Animals , Polychlorinated Biphenyls/analysis , Flame Retardants/analysis , Halogenated Diphenyl Ethers/metabolism , Ecosystem , Persistent Organic Pollutants , Bays , Hydrocarbons, Chlorinated/analysis , Pesticides/analysis , Fishes/metabolism , Environmental Monitoring
4.
Sci Total Environ ; 751: 141807, 2021 Jan 10.
Article in English | MEDLINE | ID: mdl-33181997

ABSTRACT

The contamination of tiger sharks (Galeocerdo cuvier) and bull sharks (Carcharhinus leucas) by legacy persistent organic pollutants (POPs) and emerging organic contaminants was investigated in specimens from Reunion Island (Southwest Indian Ocean) in 2018 and 2019. Contamination levels were determined in the muscle of adult individuals of both sexes in relation to biological and trophic parameters. Maternal transfer was additionally investigated in one set of embryos in each species. Polychlorinated biphenyl (PCB), organochlorinated pesticide (OCP) and perfluoroalkylated substance (PFAS) concentrations were 2597 ± 2969, 785 ± 966 and 267 ± 194 pg g-1 ww, respectively, in bull sharks, and 339 ± 270, 1025 ± 946 and 144 ± 53 pg g-1 ww in tiger sharks. The results highlighted higher PCB contamination, and by the heavier congeners, in adult bull sharks versus tiger sharks. The significant differences found in PCB profiles and concentrations suggest that the two species are exposed to different contamination sources. As bull sharks rely on a more coastal habitat for feeding, their higher contamination by PCBs suggests the occurrence of local PCB sources. DDT concentrations were similar in both species, suggesting a more homogeneous contamination on the scale of the Southwest Indian Ocean. Female bull sharks showed lower OCP and PCB concentrations than males, while this trend was not observed in tiger sharks. The ratio of chlorinated contaminants in muscle between the mother and her embryos was related to molecule hydrophobicity in bull shark but not in tiger shark, suggesting that shark mode of gestation, known to be different in the two species, is a key driver of organic contaminant maternal transfer. Finally, the results show that organic contaminant levels in the studied species were lower than those of other shark species in the Southern Hemisphere, related to the limited urbanization and industrialization of Reunion Island.


Subject(s)
Polychlorinated Biphenyls , Sharks , Animals , Female , Humans , Indian Ocean , Male , Polychlorinated Biphenyls/analysis , Reunion , Seafood
5.
Mar Pollut Bull ; 158: 111436, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32753219

ABSTRACT

Swordfish (Xiphias gladius) is a major marine resource of high economic value to industrial and artisanal fisheries. As a top predator with a long lifespan, it is prone to accumulate high levels of contaminants. The bioaccumulation of a wide range of both legacy and emerging persistent organic contaminants was investigated in the muscle, liver and gonads of swordfish collected from the Seychelles, western Indian Ocean. The detection of all target contaminants, some at frequencies above 80%, highlights their widespread occurrence, albeit at low levels. Mean concentrations in muscle were 5637, 491 and 331 pg g-1 ww for organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs) and perfluoroalkyl substances (PFASs), respectively. ∑BFR mean concentrations were far below, i.e. 47 pg g-1 ww. The data are among the first obtained for such a high diversity of contaminants in an oceanic top predator worldwide and constitute a benchmark of the contamination of Indian Ocean ecosystems.


Subject(s)
Hydrocarbons, Chlorinated , Pesticides/analysis , Polychlorinated Biphenyls/analysis , Water Pollutants, Chemical/analysis , Animals , Bioaccumulation , Ecosystem , Environmental Monitoring , Indian Ocean , Seychelles
6.
Environ Res ; 188: 109761, 2020 09.
Article in English | MEDLINE | ID: mdl-32562947

ABSTRACT

Tuna and billfish are large pelagic fish of ecological importance in open oceans. As top predators with a long lifespan, they are prone to exposure to various contaminants such as persistent organic pollutants (POPs) and contaminants of emerging concern. In this study, three pollutant families were investigated, including polychlorinated biphenyls (PCBs), organochlorinated pesticides (OCPs) and perfluoroalkyl substances (PFASs), including perfluorooctane sulfonate (PFOS) and perfluorocarboxylic acids (PFCAs). Contamination was investigated in individuals from three tropical tuna species, namely bigeye (Thunnus obesus), skipjack (Katsuwonus pelamis) and yellowfin (Thunnusalbacares) tunas and the billfish swordfish (Xiphias gladius), collected from various areas of the western Indian Ocean (WIO) in 2013-2014. Contamination levels and profiles were examined in fish muscle, together with biological parameters (fish length / age, sex, lipid content) and ecological tracers (carbon and nitrogen stable isotopes). POP levels were low in all species in comparison to other locations worldwide, revealing a low impact of anthropogenic organic contaminants in the WIO. A predominance of OCPs (especially DDTs) versus PCBs was highlighted in all species; PFASs were predominant over chlorinated POPs in tunas. Among the studied PFASs, long-chain PFCAs were found to prevail over PFOS in all species. Organic contaminant profiles differed across species according to their foraging habitat; swordfish and bigeye tuna, which both feed in deep oceanic layers, showed similarities in their contaminant profiles. Geographically, the distinct DDT profiles of fish from the Mozambique Channel suggested an exposure to different DDT sources, in line with regional use of this insecticide and coupled with an extended residence time of fish in the Channel. To our knowledge, the data presented here are among the first obtained for legacy and emerging organic contaminants in various species of large pelagic predators from the WIO.


Subject(s)
Polychlorinated Biphenyls , Water Pollutants, Chemical , Animals , Environmental Monitoring , Fishes , Humans , Indian Ocean , Polychlorinated Biphenyls/analysis , Seafood , Water Pollutants, Chemical/analysis
7.
Environ Res ; 148: 196-206, 2016 07.
Article in English | MEDLINE | ID: mdl-27084988

ABSTRACT

The contamination of albacore tuna (Thunnus alalunga) by Persistent Organic Pollutants (POPs), namely polychlorinated biphenyls (PCBs) and dichlorodiphenyl-trichloroethane (DDT), was investigated in individuals collected from Reunion Island (RI) and South Africa's (SA) southern coastlines in 2013, in relation to biological parameters and feeding ecology. The results showed lower PCB and DDT concentrations than those previously reported in various tuna species worldwide. A predominance of DDTs over PCBs was revealed, reflecting continuing inputs of DDT. Tuna collected from SA exhibited higher contamination levels than those from RI, related to higher dietary inputs and higher total lipid content. Greater variability in contamination levels and profiles was identified in tuna from RI, explained by a higher diversity of prey and more individualistic foraging behaviour. PCB and DDT contamination levels and profiles varied significantly in tuna from the two investigated areas, probably reflecting exposure to different sources of contamination.


Subject(s)
DDT/analysis , Polychlorinated Biphenyls/analysis , Tuna/metabolism , Water Pollutants, Chemical/analysis , Animals , Body Size , Environmental Monitoring , Female , Food Chain , Gastrointestinal Contents/chemistry , Gonads/growth & development , Indian Ocean , Lipid Metabolism , Liver/growth & development , Male , Muscle, Skeletal/chemistry , Organ Size , South Africa
8.
Sci Total Environ ; 491-492: 170-5, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-24530183

ABSTRACT

Perfluoroalkyl acids (PFAAs) are globally found in various media, including food and especially fishery products. In the present study, the dietary exposure to 15 perfluoroalkyl acids was assessed for 3 French adult populations, namely high seafood consumers, high freshwater fish consumers, and pregnant women. Purified food extracts were analysed by LC-MS/MS and PFBA, PFPA, PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUnA, PFTrDA, PFTeDA, PFBS, PFHxS, PFHpS, PFOS and PFDS were monitored and quantified according to the isotope dilution principle. Under lower bound (LB) hypothesis (i.e. contamination values

Subject(s)
Diet/statistics & numerical data , Environmental Exposure/statistics & numerical data , Fluorocarbons/analysis , Seafood/statistics & numerical data , Water Pollutants, Chemical/analysis , Adult , Animals , Female , Food Contamination/statistics & numerical data , France , Humans , Male , Maternal Exposure/statistics & numerical data , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...