Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Nature ; 513(7517): 233-6, 2014 Sep 11.
Article in English | MEDLINE | ID: mdl-25043015

ABSTRACT

The evolution of the placenta from a non-placental ancestor causes a shift of maternal investment from pre- to post-fertilization, creating a venue for parent-offspring conflicts during pregnancy. Theory predicts that the rise of these conflicts should drive a shift from a reliance on pre-copulatory female mate choice to polyandry in conjunction with post-zygotic mechanisms of sexual selection. This hypothesis has not yet been empirically tested. Here we apply comparative methods to test a key prediction of this hypothesis, which is that the evolution of placentation is associated with reduced pre-copulatory female mate choice. We exploit a unique quality of the livebearing fish family Poeciliidae: placentas have repeatedly evolved or been lost, creating diversity among closely related lineages in the presence or absence of placentation. We show that post-zygotic maternal provisioning by means of a placenta is associated with the absence of bright coloration, courtship behaviour and exaggerated ornamental display traits in males. Furthermore, we found that males of placental species have smaller bodies and longer genitalia, which facilitate sneak or coercive mating and, hence, circumvents female choice. Moreover, we demonstrate that post-zygotic maternal provisioning correlates with superfetation, a female reproductive adaptation that may result in polyandry through the formation of temporally overlapping, mixed-paternity litters. Our results suggest that the emergence of prenatal conflict during the evolution of the placenta correlates with a suite of phenotypic and behavioural male traits that is associated with a reduced reliance on pre-copulatory female mate choice.


Subject(s)
Cyprinodontiformes/classification , Cyprinodontiformes/physiology , Phylogeny , Sexual Behavior, Animal/physiology , Viviparity, Nonmammalian/physiology , Animals , Body Size , Cyprinodontiformes/anatomy & histology , Female , Genitalia, Male/anatomy & histology , Male , Reproduction
2.
Mol Ecol ; 16(2): 313-25, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17217347

ABSTRACT

Many aquatic and riparian plant species are characterized by the ability to reproduce both sexually and asexually. Yet, little is known about how spatial variation in sexual and asexual reproduction affects the genotypic diversity within populations of aquatic and riparian plants. We used six polymorphic microsatellites to examine the genetic diversity within and differentiation among 17 populations (606 individuals) of Sparganium emersum, in two Dutch-German rivers. Our study revealed a striking difference between rivers in the mode of reproduction (sexual vs. asexual) within S. emersum populations. The mode of reproduction was strongly related to locally reigning hydrodynamic conditions. Sexually reproducing populations exhibited a greater number of multilocus genotypes compared to asexual populations. The regional population structure suggested higher levels of gene flow among sexually reproducing populations compared to clonal populations. Gene flow was mainly mediated via hydrochoric dispersal of generative propagules (seeds), impeding genetic differentiation among populations even over river distances up to 50 km. Although evidence for hydrochoric dispersal of vegetative propagules (clonal plant fragments) was found, this mechanism appeared to be relatively less important. Bayesian-based assignment procedures revealed a number of immigrants, originating from outside our study area, suggesting intercatchment plant dispersal, possibly the result of waterfowl-mediated seed dispersal. This study demonstrates how variation in local environmental conditions in river systems, resulting in shifting balances of sexual vs. asexual reproduction within populations, will affect the genotypic diversity within populations. This study furthermore cautions against generalizations about dispersal of riparian plant species in river systems.


Subject(s)
Demography , Environment , Genetic Variation , Genetics, Population , Magnoliopsida/genetics , Rivers , Bayes Theorem , Gene Flow/genetics , Gene Frequency , Germany , Magnoliopsida/physiology , Microsatellite Repeats/genetics , Netherlands , Reproduction, Asexual/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...