Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ecotoxicol Environ Saf ; 105: 80-9, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24793517

ABSTRACT

Heavy metals, such as lead, copper, cadmium, zinc, and nickel, are among the most common pollutants found in both industrial and urban effluents. High concentrations of these metals cause severe toxic effects, especially to organisms living in the aquatic ecosystem. Cadmium (Cd), lead (Pb) and copper (Cu) are the heavy metals most frequently implicated as environmental contaminants, and they have been shown to affect development, growth, photosynthesis and respiration, and morphological cell organization in seaweeds. This paper aimed to evaluate the effects of 50µM and 100µM of Cd, Pb and Cu on growth rates, photosynthetic pigments, biochemical parameters and ultrastructure in Gelidium floridanum. To accomplish this, apical segments of G. floridanum were individually exposed to the respective heavy metals over a period of 7 days. Plants exposed to Cd, Cu and Pb showed discoloration of thallus pigmentation, chloroplast alteration, especially degeneration of thylakoids, and decrease in photosynthetic pigments, such as chlorophyll a and phycobiliproteins, in samples treated with Cd and Cu. Moreover, cell wall thickness and the volume of plastoglobuli increased. X-ray microanalysis detected Cd, Cu and Pb absorption in the cell wall. The results indicate that Cd, Pb and Cu negatively affect metabolic performance and cell ultrastructure in G. floridanum and that Cu was more toxic than either Pb or Cd.


Subject(s)
Metals, Heavy/metabolism , Metals, Heavy/toxicity , Rhodophyta/drug effects , Rhodophyta/metabolism , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/toxicity , Cell Respiration/drug effects , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Photosynthesis/drug effects , Pigments, Biological/metabolism , Rhodophyta/growth & development , Rhodophyta/ultrastructure
2.
Photochem Photobiol ; 90(3): 560-73, 2014.
Article in English | MEDLINE | ID: mdl-24329523

ABSTRACT

The photoacclimation responses of the brown macroalga Sargassum cymosum were studied to determine its cytochemical and ultrastructural organization, as well as photosynthetic pigments and performance. S. cymosum was cultivated in three salinities (30, 35 and 40 psu) under four irradiation treatments: PAR-only, PAR + UVA, PAR + UVB and PAR + UVA + UVB. Plants were exposed to PAR at 70 µmol photons m(-2) s(-1), PAR + UVB at 0.35 W m(-2) and PAR +UVA at 0.70 W m(-2) for 3 h per day during 7 days in vitro. Growth rate was not significantly affected by any type of radiation or salinity. The amount of pigments in S. cymosum was significantly influenced by the interaction of salinity and radiation treatments. Compared with PAR-only, UVR treatments modified the kinetics patterns of the photosynthesis/irradiance curve. After exposure to UVR, S. cymosum increased cell wall thickness and the presence of phenolic compounds. The number of mitochondria increased, whereas the number of chloroplasts showed few changes. Although S. cymosum showed insensitivity to changes in salinity, it can be concluded that samples treated under four irradiation regimes showed structural changes, which were more evident, but not severe, under PAR + UVB treatment.


Subject(s)
Adaptation, Physiological , Phaeophyceae/physiology , Photosynthesis , Salinity , Ultraviolet Rays , Electron Transport , Marine Biology , Microscopy, Electron, Transmission , Phaeophyceae/radiation effects , Phaeophyceae/ultrastructure , Pigments, Biological/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...