Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Water Res ; 254: 121437, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38479171

ABSTRACT

Agricultural irrigation using reclaimed urban wastewater (RWW) represents a sustainable practice to meet the ever-increasing water stress in modern societies. However, the occurrence of residual antibiotics and antibiotic resistant bacteria (ARB) in RWW is an important human health concern. This study applied for the first time a novel Simple-Death dose-response model to the field data of Escherichia coli and Pseudomonas spp. collected from three greenhouses for cultivation of tomatoes irrigated with RWW. The model estimates the risk of infection by enteropathogenic E. coli associated with consumption of tomatoes and the risk of eye-infection caused by Pseudomonas aeruginosa in cultivation soil through hand-to-eye contacts. The fraction of antibiotic resistant (AR)-E. coli measured in irrigation water and AR-Pseudomonas spp. in soil was incorporated in the model to estimate the survival of ARB and antibiotic susceptible bacteria in the presence of trace level of antibiotics in human body. The results showed that the risk of E. coli infection through consumption of tomatoes irrigated with RWW is within the WHO and USEPA recommended risk threshold (<10-4); Pseudomonas aeruginosa eye-infection risk is at or below the acceptable risk level. The presence of residual antibiotic in human body reduced the overall risk probabilities of infections but selectively enhanced the survival of ARB in comparison to their susceptible counterparts, which resulted in antibiotic untreatable infection. Therefore, the outcomes of this study call for a new risk threshold for antibiotic untreatable infections and highlight the key importance of adopting work safety measures for better human health protection.


Subject(s)
Solanum lycopersicum , Wastewater , Humans , Escherichia coli , Angiotensin Receptor Antagonists , Angiotensin-Converting Enzyme Inhibitors , Agricultural Irrigation/methods , Soil , Anti-Bacterial Agents
2.
Water Res ; 254: 121441, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38479173

ABSTRACT

This study examined the antimicrobial efficacy of peroxymonosulfate (PMS) against bacteria, using Escherichia coli (E. coli) as a model organism. Our investigation delineates the complex mechanisms exerted by unactivated PMS. Thus, an initial redox reaction between PMS and the target biomolecules of bacteria generates SO4•- as the pivotal reactive species for bacterial inactivation; to a lesser extent, •OH, 1O2, or O2•- may also participate. Damage generated during oxidation was identified using an array of biochemical techniques. Specifically, redox processes are promoted by PMS and SO4•- targets and disrupt various components of bacterial cells, predominantly causing extracellular damage as well as intracellular lesions. Among these, external events are the key to cell death. Finally, by employing gene knockout mutants, we uncovered the role of specific gene responses in the intracellular damage induced by radical pathways. The findings of this study not only expand the understanding of PMS-mediated bacterial inactivation but also explain the ten-fold higher effectiveness of PMS than that reported for H2O2. Hence, we provide clear evidence that unactivated PMS solutions generate SO4•- in the presence of bacteria, and consequently, should be considered an effective disinfection method.


Subject(s)
Disinfection , Hydrogen Peroxide , Disinfection/methods , Escherichia coli , Peroxides/chemistry , Oxidation-Reduction , Bacteria
3.
Sci Total Environ ; 881: 163407, 2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37044331

ABSTRACT

The safe reuse of reclaimed water for agricultural irrigation has been considered as an alternative, feasible and sustainable option to address water scarcity. This work aims to validate the capability of the solar water photochemical process based on the synergistic effect between peroxymonosulfate (PMS) and natural solar radiation for actual urban wastewater (UWW) purification at a pilot plant scale using a solar Compound Parabolic Collector photo-reactor. The PMS/Solar process performance was assessed by monitoring simultaneously the inactivation of naturally occurring bacteria (Escherichia coli, Total coliforms, Enterococcus spp. and Pseudomonas spp.) as a potential tertiary treatment to fit the minimum bacterial requirements for UWW purification but also additional challenges have been in deep analysed simultaneously. In this regard, a global analysis including the degradation of three Contaminants of Emerging Concern (CECs) (Diclofenac-DCF, Sulfamethoxazole-SMX and Trimethoprim-TMP), the removal of antibiotic resistant elements, the residual toxicity and the treatment cost has been analysed. Different PMS concentrations (0-1 mM) were tested and an enhancement in the process performance was obtained with increasing oxidant load, obtaining the best results with 1 mM of PMS, at which detection limit (DL) of 2 CFU/mL was reached for all microbial targets after 15 min (1.1 kJ/L of accumulated solar UV-A radiation (QUV)) and 80 % of CECs removal was reached after 27 min (2.0 kJ/L of QUV) of solar treatment time. Inactivation of naturally occurring antibiotic resistant bacteria (ARB) and removal of 16S rRNA and selected antibiotic resistance genes (ARGs) (i.e., intI1, sul1, qnrS, blaTEM, blaCTX-M32, tetM) were also investigated. ARB was successfully inactivated to values below the DL, but the process was not able to completely remove ARGs. A total reduction of intI1 (30 %), 16S rRNA (19 %), sul1 (14 %), blaCTX-M32 (12 %), qnrS (10 %), blaTEM (8 %), and tetM (7 %), was obtained after 120 min (11.5 kJ/L of QUV). An absence of an eco and phytotoxic effect of treated samples was observed towards Aliivibrio fischeri and three seeds, respectively. Finally, an estimated treatment cost of 0.96 €/m3 for the simultaneous UWW disinfection and decontamination demonstrates the promising capability of this solar treatment for UWW reclamation and reuse in agriculture, especially in areas with a high solar radiation incidence.


Subject(s)
Angiotensin Receptor Antagonists , Water Purification , RNA, Ribosomal, 16S/genetics , Angiotensin Receptor Antagonists/metabolism , Angiotensin Receptor Antagonists/pharmacology , Hydrogen Peroxide/chemistry , Wastewater , Angiotensin-Converting Enzyme Inhibitors/metabolism , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Bacteria/genetics , Sulfamethoxazole/metabolism , Water Purification/methods , Anti-Bacterial Agents/pharmacology
4.
Water Res ; 230: 119566, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36642029

ABSTRACT

This work is focused on improving the understanding of the complex water matrix interactions occurring during the removal of a microcontaminants mixture (acetamiprid, carbamazepine and caffeine) by solar/Fe3+-EDDS/persulfate process. The individual and combined effects of sulfates (100-500 mg/L), nitrates (20-160 mg/L), bicarbonates (77-770 mg/L) and chlorides (300-1500 mg/L) were assessed by comparing the outcomes obtained in different synthetic and actual water matrices. In general, the results showed negligible effects of the different anions on Fe3+-EDDS concentration and PS consumption profiles, while the combination of bicarbonates and chlorides seemed to be the key for the MC removal efficiency decrease found when working with complex matrixes. Finally, the influence of dissolved organic matter on process performance was evaluated. It was concluded that there is neither any influence of this variable on Fe3+-EDDS concentration and PS consumption profiles. In contrast, there was a general negative effect on MC removal efficiency, which strongly depended on both the concentration and composition of the dissolved organic matter.


Subject(s)
Hydrogen Peroxide , Water Pollutants, Chemical , Chlorides , Bicarbonates , Dissolved Organic Matter , Water , Water Pollutants, Chemical/analysis , Oxidation-Reduction , Sulfates
5.
Sci Rep ; 12(1): 18933, 2022 11 07.
Article in English | MEDLINE | ID: mdl-36344608

ABSTRACT

The lack of safe drinking water affects communities in low-to-medium-income countries most. This barrier can be overcome by using sustainable point-of-use water treatments. Solar energy has been used to disinfect water for decades, and several efforts have been made to optimise the standard procedure of solar water disinfection (SODIS process). However, the Health Impact Assessment of implementing advanced technologies in the field is also a critical step in evaluating the success of the optimisation. This work reports a sustainable scaling-up of SODIS from standard 2 L bottles to 25 L transparent jerrycans (TJC) and a 12-month field implementation in four sites of Tigray in Ethiopia, where 80.5% of the population lives without reliable access to safe drinking water and whose initial baseline average rate of diarrhoeal disease in children under 5 years was 13.5%. The UVA dose required for 3-log reduction of E. coli was always lower than the minimum UVA daily dose received in Tigray (9411 ± 55 Wh/m2). Results confirmed a similar decrease in cases of diarrhoea in children in the implementation (25 L PET TJC) and control (2 L PET bottles) groups, supporting the feasibility of increasing the volume of the SODIS water containers to produce safer drinking water with a sustainable and user-friendly process.


Subject(s)
Drinking Water , Water Purification , Child , Humans , Child, Preschool , Disinfection/methods , Escherichia coli , Ethiopia , Sunlight , Water Purification/methods , Diarrhea/epidemiology , Water Microbiology
6.
Chemosphere ; 303(Pt 2): 135017, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35609667

ABSTRACT

This study investigates the capability of modified zinc oxides (ZnO) with Ce, Yb and Fe towards the simultaneous inactivation of pathogenic bacteria (Escherichia coli, Enterococcus faecalis and Pseudomonas aeruginosa) and Contaminants of Emerging Concern (CECs, Diclofenac, Sulfamethoxazole and Trimethoprim) under natural sunlight. Several catalyst loads (from 0 to 500 mg/L) were assessed as proof-of principle in isotonic solution followed by the evaluation of organic matter effect in simulated and actual urban wastewater (UWW), using bare TiO2-P25 as reference. The order of photocatalysts efficiency for both bacterial and CECs removal was: ZnO-Ce â‰… TiO2-P25 > ZnO-Yb > ZnO-Fe > photolysis > darkness in all water matrices. The best photocatalytic performance for water disinfection and decontamination was obtained with 500 mg/L of ZnO-Ce: 80% of ∑CECs removal after 45 min (4.4 kJ/L of accumulated solar UV-A energy (QUV)) and the total inactivation of bacteria (Detection Limit of 2 CFU/mL) after 120 min (14 kJ/L of QUV) in UWW. The microbial and CECs abatement mechanism was described based on the generation of hydroxyl radicals, which was experimentally demonstrated for ZnO-Ce. Additionally, no significant release of Zn2+ and Ce was detected after the solar exposure. These results point out for the first time the capability of ZnO-Ce for the simultaneous UWW disinfection and decontamination under natural sunlight.


Subject(s)
Metals, Rare Earth , Water Purification , Zinc Oxide , Bacteria , Catalysis , Decontamination , Disinfection/methods , Escherichia coli , Sunlight , Wastewater/microbiology , Water , Zinc Oxide/pharmacology
7.
J Hazard Mater ; 436: 129134, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35580500

ABSTRACT

The effect of different times of Fe:Ethylenediamine-N, N'-disuccinic acid (EDDS) dosing and H2O2 as well as different Fe:EDDS concentrations in the sequential treatment sunlight/H2O2 followed by sunlight/H2O2/Fe:EDDS at circumneutral pH was investigated for the first time focusing both in contaminants of emerging concern (CECs) and bacteria removal in urban wastewater treatment plant effluents. Process efficiency was evaluated in terms of (i) degradation of five CECs (namely caffeine, carbamazepine, diclofenac, sulfamethoxazole and trimethoprim) at the initial concentration of 100 µgL-1 each and (ii) bacteria inactivation (Escherichia coli (E. coli) and Salmonella spp). The effect of H2O2, Fe and EDDS concentration and Fe:EDDS dosing time was evaluated. 60% removal of the sum of total CECs and pathogens inactivation below the detection limit (DL) were observed by the sequential treatment with Fe:EDDS additions at 60 min and 45 min in simulated urban wastewater effluent. Sequential treatment was validated in actual urban wastewater effluent, being able to remove 60% of the target CECs and inactivate bacteria below the DL. Increasing EDDS concentration negatively affected Salmonella spp inactivation. Sequential treatment based on 120 min of sunlight/H2O2 (50 mg L-1) and subsequent SPF with Fe:EDDS (0.1:0.1 mM) was chosen as best operation conditions for full scale treatment in urban wastewater treatment plants.


Subject(s)
Wastewater , Water Pollutants, Chemical , Disinfection , Escherichia coli , Hydrogen Peroxide/chemistry , Oxidation-Reduction , Sunlight , Wastewater/chemistry , Water Pollutants, Chemical/analysis
8.
Chemosphere ; 288(Pt 2): 132493, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34637860

ABSTRACT

Contamination of natural water (NW) by emerging contaminants has been widely pointed out as one of the main challenges to ensure high-quality drinking water. Thus, the effectiveness of a solar-driven free chlorine advanced oxidation process simultaneously investigating the elimination of six organic microcontaminants (OMCs) and three bacteria from NW at a pilot-scale was evaluated in this study. Firstly, the solar/free chlorine process was studied at lab-scale using a solar simulator to evaluate the effect of free chlorine concentration (0.5-10 mg L-1) on OMC degradation and generation of toxic oxyanions (e.g., ClO3- ions). Thus, the best free chlorine concentration observed was applied for the simultaneous removal of OMCs and pathogens under natural solar light at pilot scale. At lab-scale, the solar/free chlorine (2.5 mg L-1) process achieved 80% of total degradation in 5 min (1.4 kJ L-1 of accumulative UV energy) with an oxidant consumption of 0.3 mg L-1 and without ClO3- generation. Similar results were attained under natural solar irradiation at a pilot-scale. For all bacteria strains, the legally required detection limit (DL = 1 CFU 100 mL-1) for reclaimed water reuse was attained in a short contact time. Still, more importantly, the solar/free chlorine (2.5 mg L-1) process effectively avoided the possible bacterial regrowth in the post-treated sample after six days. Finally, the combination of free chlorine with solar irradiation provided a simple and energy-efficient process for OMC and bacteria removal in NW at a pilot-scale.


Subject(s)
Chlorine , Water
9.
Water Res ; 203: 117532, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34419922

ABSTRACT

In this study, a full cycle of agricultural reuse of agro-food wastewater (synthetic fresh-cut wastewater, SFCWW) at pilot plant scale has been investigated. Treated SFCWW by ozonation and two solar processes (H2O2/solar, Fe3+-EDDHA/H2O2/solar) was used to irrigate two raw-eaten crops (lettuce and radish) grown in peat. Two foodborne pathogens (E. coli O157:H7 and Salmonella enteritidis) and five organic microcontaminants (OMCs: atrazine, azoxystrobin, buprofezin, procymidone and terbutryn) were monitored along the whole process. The three studied processes showed a high treatment capability (reaching microbial loads < 7 CFU/100 mL and 21-90 % of OMC reduction), robustness (based on 7 or 10 analysed batches for each treatment process) and high suitability for subsequent treated SFCWW safe reuse: non-phytotoxic towards Lactuca sativa and no bacterial regrowth during its storage for a week. The analysis of the harvested crop samples irrigated with treated SFCWW in all the studied processes showed an absence of microbial contamination (< limit of detection, LOD; i.e., < 1 CFU/99 g of lettuce and < 1 CFU/8 g of radish), a significant reduction of OMC uptake (in the range 40-60 % and > 90 % for solar treated and ozonated SFCWW, respectively) and bioaccumulation in both crops in comparison with the results obtained with untreated SFCWW. Moreover, the chlorophyll content in the harvested lettuces irrigated with SFCWW treated by Fe3+-EDDHA/H2O2/solar was twice than that irrigated with SFCWW treated by H2O2/solar and ozone, indicating the additional advantage of using Fe3+-EDDHA as an iron source to reduce the risk of iron chlorosis in crops. Finally, the chemical (dietary risk assessment for the combined exposure of the 5 OMCs) and quantitative microbiological risk assessment (QMRA) of the harvested crops showed the capability of the studied processes to reduce the risk associated with untreated SFCWW reuse by more than 50 % and more than 4 orders of magnitude, respectively.


Subject(s)
Anemia, Hypochromic , Escherichia coli O157 , Ozone , Agricultural Irrigation , Hydrogen Peroxide , Lactuca , Wastewater
10.
Molecules ; 26(16)2021 Aug 12.
Article in English | MEDLINE | ID: mdl-34443481

ABSTRACT

This study explores the capability of Sulfate Radical-based Advanced Oxidation Processes (SR-AOPs) for the simultaneous disinfection and decontamination of urban wastewater. Sulfate and hydroxyl radicals in solution were generated activating peroxymonosulfate (PMS) under UV-C irradiation at pilot plant scale. The efficiency of the process was assessed toward the removal of three CECs (Trimethoprim (TMP), Sulfamethoxazole (SMX), and Diclofenac (DCF)) and three bacteria (Escherichia coli, Enterococcus spp., and Pseudomonas spp.) in actual urban wastewater (UWW), obtaining the optimal value of PMS at 0.5 mmol/L. Under such experimental conditions, bacterial concentration ≤ 10 CFU/100 mL was reached after 15 min of UV-C treatment (0.03 kJ/L of accumulative UV-C radiation) for natural occurring bacteria, no bacterial regrowth was observed after 24 and 48 h, and 80% removal of total CECs was achieved after 12 min (0.03 kJ/L), with a release of sulfate ions far from the limit established in wastewater discharge. Moreover, the inactivation of Ampicillin (AMP), Ciprofloxacin (CPX), and Trimethoprim (TMP) antibiotic-resistant bacteria (ARB) and reduction of target genes (ARGs) were successfully achieved. Finally, a harmful effect toward the receiving aquatic environment was not observed according to Aliivibrio fischeri toxicity tests, while a slightly toxic effect toward plant growth (phytotoxicity tests) was detected. As a conclusion, a cost analysis demonstrated that the process could be feasible and a promising alternative to successfully address wastewater reuse challenges.


Subject(s)
Peroxides/chemistry , Waste Disposal, Fluid/methods , Wastewater/chemistry , Water Purification/methods , Aliivibrio fischeri/drug effects , Anti-Bacterial Agents/chemistry , Bacteria/drug effects , Drug Resistance, Microbial/drug effects , Drug Resistance, Microbial/genetics , Oxidation-Reduction , Plants/drug effects , Sulfates/chemistry , Ultraviolet Rays , Wastewater/analysis , Wastewater/microbiology , Wastewater/toxicity , Water Pollutants, Chemical/radiation effects
11.
Chemosphere ; 279: 130555, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34134404

ABSTRACT

This study investigates the effectiveness of non-activated peroxymonosulfate (PMS) as oxidative agent for water purification in the presence and absence of natural solar radiation. The inactivation of three pathogens (Escherichia coli, Enterococcus faecalis and Pseudomonas aeruginosa) and degradation of three Contaminants of Emerging Concern (CECs) (Trimethoprim-TMP, Sulfamethoxazole-SMX and Diclofenac-DCF) was simultaneously assessed in isotonic water (IW) by testing a wide range of PMS concentrations (from 0.0001 to 0.01 mM). A significant oxidative effect of PMS in darkness was obtained for both bacteria and CEC abatement, but when irradiated with solar light, results demonstrated a great enhancement on all bacterial kinetic rates, reaching >5 Log reduction in 30 min (1.5 kJL-1 of QUV) with 0.005 mM of oxidant as the best concentration. For CECs, higher degradation performance was obtained with 0.01 mM, 80% removal of DCF, SMX and TMP was achieved in 16 min (1.5 kJL-1), 27 min (9.4 kJL-1) and 150 min (16.8 kJL-1), respectively. Besides, the influence of inorganic species on the global PMS/solar system performance was assessed by testing its effectiveness in distilled water (DW), natural well water (WeW) and diluted well water (d-WeW) at 0.01 mM. Results revealed that (i) high chloride concentration (IW) has an important positive effect, (ii) the presence of a complex inorganic chemical water composition reduced the system efficiency (WeW), and (iii) no differences were obtained from the presence of low or high contents of carbonates/bicarbonates (WeW versus d-WeW), obtaining the following global PMS/solar efficiency performance order: IW > DW > WeW = d-WeW.


Subject(s)
Water Pollutants, Chemical , Water Purification , Oxidation-Reduction , Peroxides , Water , Water Pollutants, Chemical/analysis
12.
Sci Total Environ ; 787: 147531, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-33991917

ABSTRACT

Solar processes (sunlight/H2O2, solar photo-Fenton with EDDS at neutral pH) were compared to a consolidated technology (ozonation) in the inactivation of target bacteria (E. coli, Salmonella spp. and Enterococcus spp.) under realistic conditions (real secondary treated urban wastewater (WW), pilot scale reactors, natural sunlight) to evaluate their possible industrial application. The highest bacteria inactivation rate (all the target pathogens were inactivated below the detection limit (DL) (100 CFU/100 mL) within 45 min treatment) was observed for ozonation (83 mgO3/L h). Similar inactivation behavior for all bacteria was observed for sunlight/H2O2 (50 mg/L) and solar photo-Fenton (SPF) with EDDS (1:1 molar ratio, 0.1 mM of Fe and 50 mg/L of H2O2). Although the DL was not reached, faster inactivation kinetics (0.007, 0.013 and 0.002 1/min for E. coli, Salmonella spp. and Enterococcus spp., respectively) and lower bacterial concentration after a 180 min treatment were observed for sunlight/H2O2 process compared to SPF (0.005, 0.01 1/min and no inactivation, respectively), Enterococcus spp. being the higher resistance microorganism. The negative effect of carbonates on disinfection performance was also evaluated. Quantitative microbial risk assessment for the ingestion of lettuce irrigated with untreated and treated WW was estimated. Disinfection by ozonation and sunlight/H2O2 processes were found to drastically decrease the associated microbiological risk (the mean risk of illness decreased from 0.10 (untreated) to 1.35 × 10-4 (treated) for E. coli and from 0.03 to 2.21 × 10-6 for Salmonella).

13.
Sci Total Environ ; 766: 144320, 2021 Apr 20.
Article in English | MEDLINE | ID: mdl-33401038

ABSTRACT

Simultaneous removal of contaminants of emerging concern and bacteria inactivation in simulated municipal wastewater effluent (SMWW) through solar advanced oxidation processes, namely sunlight/H2O2 and solar photo-Fenton with Ethylenediamine-N,N'-disuccinic acid (EDDS) at neutral pH was investigated. Process efficiency was evaluated in terms of (i) degradation of five contaminants of emerging concern (CECs, namely caffeine, carbamazepine, diclofenac, sulfamethoxazole and trimethoprim) at the initial concentration of 100 µgL-1 each and (ii) bacteria inactivation (E. coli, S. enteritidis and E. faecalis), at the initial concentration of 103 CFU mL-1 each. Solar photo-Fenton process was first investigated at lab scale in a solar simulator to evaluate the effect of iron concentration (0.1 mM and 0.05 mM) and Fe:EDDS ratio (1:2 and 1:1). Subsequently, sunlight/H2O2 and solar photo-Fenton with EDDS (molar ratio 1:1, Fe(III) 0.1 mM) at neutral pH were singularly and sequentially investigated at pilot scale in a raceway pond reactor. Sunlight/H2O2 (50 mg L-1) tests resulted in total bacteria inactivation in 60 min (0.69 kJ L-1) but low CECs removal efficiency. On the opposite, solar photo-Fenton was effective in the removal of the total CECs (87% removal after 20 min and 0.14 kJ L-1) but not in E. faecalis inactivation (the initial concentration did not change even after 180 min). However, when the two processes were operated sequentially, a complete bacteria inactivation was observed in 15 min (0.17 kJ L-1), 20 min (0.23 kJ L-1) and 60 min (0.70 kJ L-1) of treatment for E. coli, S. enteritidis and E. faecalis, respectively and 80% removal of total CECs was achieved after 10 min of Fe:EDDS addition. Sequential combination of sunlight/H2O2 and solar photo-Fenton would be an effective solution for simultaneous CECs removal and bacteria inactivation in the same photo-reactor.


Subject(s)
Wastewater , Water Pollutants, Chemical , Escherichia coli , Ferric Compounds , Hydrogen Peroxide , Oxidation-Reduction , Sunlight , Water Pollutants, Chemical/analysis
14.
Water Res ; 183: 116074, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32721707

ABSTRACT

Sunlight can be an effective tool for inactivating pathogens in water disinfection processes. In clear water, photoinactivation of viruses is driven by the absorption of UVB radiation and it is more efficient at shorter wavelengths. Moreover, the temperature can significantly improve the efficiency of the process. To date, no kinetic model has been reported that describes the simultaneous thermal and spectral effects that occur during the solar inactivation of viruses. This work presents a novel comprehensive kinetic model for the solar inactivation of MS2 coliphage as a function of the water temperature, irradiance, and spectral distribution of the incident radiation. The model is based on a combination of the modified Arrhenius equation, a wavelength-dependent first-order inactivation model with the quantum yield, and thermal parameters estimated from laboratory data. Model predictions have a 9% error with respect to experiments in the temperature range from 30 to 50 °C and UV irradiance range from 15 to 50 W/m2. Moreover, the model was validated in three scenarios using different plastic materials that modify the spectral range of the radiation reaching the water, confirming an accurate prediction of inactivation rates for real solar disinfection systems worldwide using containers made of any material.


Subject(s)
Viruses , Water Purification , Disinfection , Sunlight , Ultraviolet Rays , Water , Water Microbiology
15.
Water Res ; 170: 115304, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31786392

ABSTRACT

In this research, the capability of ozonation and peroxone treatment for the simultaneous disinfection and decontamination of wash water from the fresh-cut industry has been investigated at pilot plant scale (10 L). The removal efficiency of six organic microcontaminants (OMCs) (four of them priority substances) and the inactivation of two foodborne pathogens (Escherichia coli O157:H7 and Salmonella enteritidis) in synthetic fresh-cut wastewater (SFCWW) has been assessed. Ozonation and peroxone (O3 with 20 mgL-1 of H2O2) process has been investigated under several operational conditions: natural SFCWW pH (6.25) and basic pH (11), and two different initial ozone production (0.09 and 0.15 gO3 L-1 h-1). Results showed that the highest efficiency for OMCs removal (85%) and pathogen inactivation (>5-Log) were obtained with ozonation treatment at natural pH. OMCs degradation was obtained after 120 min of treatment with an ozone dose of 27.4 mgO3 L-1. First order kinetic constant of each OMC degradation was obtained, and two clear different groups have been identify based on their degradation profiles, which have been correlated with their chemical structure. G1-OMC [terbutryn > buprofezin > azoxystrobin] > G2-OMC [imidacloprid > simazine > thiamethoxam]. As for bacterial inactivation, up to 10 min of treatment time and an ozone dose of <8.6 mgO3 L-1 were required to reach the detection limit (2 CFU mL-1), showing E. coli O157:H7 a higher susceptibility to be inactivated (k: 2.79 min-1) than S. enteritidis (k: 1.47 min-1). Moreover, from the techno-economical and toxicological assessment of the treated water with the best operational condition, can be highlighted: i) a slight acute toxicity for V. fischeri (47 ±â€¯2.3% of luminescence inhibition), ii) an acute toxicity for Daphnia magna (100% of immobilization) and iii) a total cost of the treatment of 1.16 € m-3.


Subject(s)
Ozone , Water Pollutants, Chemical , Animals , Decontamination , Disinfection , Escherichia coli , Hydrogen Peroxide , Wastewater
16.
Environ Sci Technol ; 53(16): 9705-9714, 2019 Aug 20.
Article in English | MEDLINE | ID: mdl-31392889

ABSTRACT

In this study, disinfection of urban wastewater (UWW) with two solar processes (H2O2 -20 mg/L and photo-Fenton 10 mg/L-Fe2+/20 mg/L-H2O2 at natural water pH) at pilot scale using a 60 L compound parabolic collector reactor for irrigation of two raw-eaten vegetables (lettuce and radish) has been investigated. Several microbial targets (total coliforms, Escherichia coli, Salmonella spp., and Enterococcus spp.) naturally occurring in UWW and 74 organic microcontaminants (OMCs) were monitored. Disinfection results showed no significant differences between both processes, showing the following inactivation resistance order: Salmonella spp. < E. coli < total coliforms < Enterococcus spp. Reductions of target microorganisms to concentrations below the limit of detection (LOD) was achieved in all cases with cumulative solar UV energy per volume (QUV) ranged from 12 to 40 kJ/L (90 min to 5 h). Solar photo-Fenton showed a reduction of 66% of OMCs and solar/H2O2 of 56% in 5 h treatment. Irrigation of radish and lettuce with solar treated effluents, secondary effluents, and mineral water was performed for 6 and 16 weeks, respectively. The presence of bacteria was monitored in surfaces and uptake of leaves, fruit, and also in soil. The bacterial concentrations detected were below the LOD in the 81.2% (lettuce) and the 87.5% (radish) of the total number of samples evaluated. Moreover, uptake of OMCs was reduced above 70% in crops irrigated with solar treated effluents in comparison with secondary effluents of UWW.


Subject(s)
Raphanus , Wastewater , Escherichia coli , Hydrogen Peroxide , Lactuca
17.
Water Res ; 149: 272-281, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30465985

ABSTRACT

Photo-driven advanced oxidation process (AOP) with peracetic acid (PAA) has been poorly investigated in water and wastewater treatment so far. In the present work its possible use as tertiary treatment of urban wastewater to effectively minimize the release into the environment of contaminants of emerging concern (CECs) and antibiotic-resistant bacteria was investigated. Different initial PAA concentrations, two light sources (sunlight and UV-C) and two different water matrices (groundwater (GW) and wastewater (WW)) were studied. Low PAA doses were found to be effective in the inactivation of antibiotic resistant Escherichia coli (AR E. coli) in GW, with the UV-C process being faster (limit of detection (LOD) achieved for a cumulative energy (QUV) of 0.3 kJL-1 with 0.2 mg PAA L-1) than solar driven one (LOD achieved at QUV = 4.4 kJL-1 with 0.2 mg PAA L-1). Really fast inactivation rates of indigenous AR E. coli were also observed in WW. Higher QUV and PAA initial doses were necessary to effectively remove the three target CECs (carbamazepine (CBZ), diclofenac and sulfamethoxazole), with CBZ being the more refractory one. In conclusion, photo-driven AOP with PAA can be effectively used as tertiary treatment of urban wastewater but initial PAA dose should be optimized to find the best compromise between target bacteria inactivation and CECs removal as well as to prevent scavenging effect of PAA on hydroxyl radicals because of high PAA concentration.


Subject(s)
Wastewater , Water Purification , Disinfection , Drug Resistance, Microbial , Escherichia coli , Peracetic Acid , Sunlight
18.
J Hazard Mater ; 372: 85-93, 2019 06 15.
Article in English | MEDLINE | ID: mdl-30037565

ABSTRACT

Photo-Fenton is a solar disinfection technology widely demonstrated to be effective to inactivate microorganisms in water by the combined effect of photoactivated iron species and the direct action of solar photons. Nevertheless, the precipitation of iron as ferric hydroxide at basic pH is the main disadvantage of this process. Thus, challenge in photo-Fenton is looking for alternatives to iron salts. Polycarboxylic acids, such as Ethylendiamine-N',N'-disuccinic acid (EDDS), can form strong complex with Fe3+ and enhance the dissolution of iron in natural water through photochemical process. The aim of this study was to evaluate the disinfection effectiveness of solar photo-Fenton with and without EDDS in water. Several reagent concentrations were assessed, best bacterial (Escherichia coli and Enterococcus faecalis) inactivation was obtained with 0.1:0.2:0.3 mM (Fe3+:EDDS:H2O2) in isotonic water. The benefit of using EDDS complexes to increase the efficiency of kept dissolved iron in water at basic pH was proven. Solar disinfection and H2O2/solar with and without EDDS, and Fe3+:EDDS complexes were also investigated. Bacterial inactivation results in municipal wastewater effluents (MWWE) demonstrated that the competitive role of organic matter and inorganic compounds strongly affect the efficacy of Fe3+:EDDS at all concentrations tested, obtaining the fastest inactivation kinetics with H2O2/solar (0.3 mM).


Subject(s)
Disinfection/methods , Escherichia coli/drug effects , Escherichia/drug effects , Ethylenediamines/pharmacology , Hydrogen Peroxide/pharmacology , Iron/pharmacology , Succinates/pharmacology , Sunlight , Wastewater/microbiology , Escherichia/radiation effects , Escherichia coli/radiation effects , Ethylenediamines/chemistry , Hydrogen Peroxide/chemistry , Iron/chemistry , Succinates/chemistry , Wastewater/chemistry , Water Purification/methods
19.
Appl Microbiol Biotechnol ; 101(20): 7445-7458, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28894894

ABSTRACT

Urban Wastewater treatment plants (UWWTPs) have played an important and fundamental role in society for water purification of contaminated human wastewaters over the last decades. Microorganisms are very important in UWWTP as their metabolic activity significantly reduces the organic load of the UWW, although there is an uncertain gap in our knowledge regarding microbial consortium structure and their activity in UWWTP operation on a large scale. On the other hand, effluents of UWWTPs have come to be a new source of fresh water to ease water scarcity in many regions of the world, especially in intensive irrigation practices. Many concerns over health risks relating to the direct reuse of this water are very well known. However, if a proper disinfection treatment is applied, these are strongly reduced as conventional methodologies have demonstrated over the last decades. In line with this, the continuous development of new devices for analytical measurement that increase the sensitivities (limit of detection) are showing that other potential risks for both environmental and human health may be associated with UWW reuse. In this work, the most important aspects related to microorganisms in UWWTPs and UWW effluents are presented. Moreover, the new developments on genetic tools for detection of microorganisms are presented, with special emphasis on metagenomic methodology. A bibliometric analysis of what has been published so far is also carried out.


Subject(s)
Metagenomics/methods , Wastewater/microbiology , Water Purification/methods , Water Quality/standards , Bibliometrics
20.
Sci Total Environ ; 607-608: 1213-1224, 2017 Dec 31.
Article in English | MEDLINE | ID: mdl-28732400

ABSTRACT

The interest in developing alternative water disinfection methods that increase the access to irrigation water free of pathogens for agricultural purposes is increasing in the last decades. Advanced Oxidation Processes (AOPs) have been demonstrated to be very efficient for the abatement of several kind of pathogens in contaminated water. The purpose of the current study was to evaluate and compare the capability of several solar AOPs for the inactivation of resistant spores of agricultural fungi. Solar photoassisted H2O2, solar photo-Fenton at acid and near-neutral pH, and solar heterogeneous photocatalysis using TiO2, with and without H2O2, have been studied for the inactivation of spores of Curvularia sp., a phytopathogenic fungi worldwide found in soils and crops. Different concentrations of reagents and catalysts were evaluated at bench scale (solar vessel reactors, 200mL) and at pilot plant scale (solar Compound Parabolic Collector-CPC reactor, 20L) under natural solar radiation using distilled water (DW) and real secondary effluents (SE) from a municipal wastewater treatment plant. Inactivation order of Curvularia sp. in distilled water was determined, i.e. TiO2/H2O2/sunlight (100/50mgL-1)>H2O2/sunlight (40mgL-1)>TiO2/sunlight (100mgL-1)>photo-Fenton with 5/10mgL-1 of Fe2+/H2O2 at pH3 and near-neutral pH. For the case of SE, at near neutral pH, the most efficient solar process was H2O2/Solar (60mgL-1); nevertheless, the best Curvularia sp. inactivation rate was obtained with photo-Fenton (10/20mgL-1 of Fe2+/H2O2) requiring a previous water adicification to pH3, within 300 and 210min of solar treatment, respectively. These results show the efficiency of solar AOPs as a feasible option for the inactivation of resistant pathogens in water for crops irrigation, even in the presence of organic matter (average Dissolved Organic Carbon (DOC): 24mgL-1), and open a window for future wastewater reclamation and irrigation use.


Subject(s)
Ascomycota/pathogenicity , Disinfection/methods , Sunlight , Wastewater/microbiology , Agricultural Irrigation , Hydrogen Peroxide/chemistry , Iron/chemistry , Plant Diseases/microbiology , Titanium/chemistry , Water Purification
SELECTION OF CITATIONS
SEARCH DETAIL
...