Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Biochem Zool ; 90(2): 257-272, 2017.
Article in English | MEDLINE | ID: mdl-28277961

ABSTRACT

Sharks migrate annually over large distances and occupy a wide variety of habitats, complicating analysis of lifestyle and diet. A biogeochemical technique often used to reconstruct shark diet and environment preferences is stable isotope analysis, which is minimally invasive and integrates through time and space. There are previous studies that focus on isotopic analysis of shark soft tissues, but there are limited applications to shark teeth. However, shark teeth offer an advantage of multiple ecological snapshots and minimum invasiveness during removal because of their distinct conveyor belt tooth replacement system. In this study, we analyze δ13C and δ15N values of the organic matrix in leopard shark teeth (Triakis semifasciata) from a captive experiment and report discrimination factors as well as incorporation rates. We found differences in tooth discrimination factors for individuals fed different prey sources (mean ± SD; Δ13Csquid = 4.7‰ ± 0.5‰, Δ13Ctilapia = 3.1‰ ± 1.0‰, Δ15Nsquid = 2.0‰ ± 0.7‰, Δ15Ntilapia = 2.8‰ ± 0.6‰). In addition, these values differed from previously published discrimination factors for plasma, red blood cells, and muscle of the same leopard sharks. Incorporation rates of shark teeth were similar for carbon and nitrogen (mean ± SE; λC = 0.021 ± 0.009, λN = 0.024 ± 0.007) and comparable to those of plasma. We emphasize the difference in biological parameters on the basis of tissue substrate and diet items to interpret stable isotope data and apply our results to stable isotope values from blue shark (Prionace glauca) teeth to illustrate the importance of biological parameters to interpret the complex ecology of a migratory shark.


Subject(s)
Carbon/metabolism , Nitrogen/metabolism , Sharks/physiology , Tooth/chemistry , Animal Feed , Animals , Carbon Isotopes , Nitrogen Isotopes , Tooth/metabolism
2.
Rapid Commun Mass Spectrom ; 29(9): 821-9, 2015 May 15.
Article in English | MEDLINE | ID: mdl-26377010

ABSTRACT

RATIONALE: Individual foraging behavior is an important variable of predators commonly studied at the population level. Some hammerhead shark species play a significant role in the marine ecosystem as top consumers. In this context, stable isotope analysis allows us to infer some ecological metrics and patterns that cannot usually be obtained using traditional methods. METHODS: We determined the isotopic composition (δ(13)C and δ(15)N values) of dorsal muscle and vertebrae of Sphyrna lewini and Sphyrna zygaena using a continuous-flow system consisting of an elemental analyzer combined with a Delta Plus XL mass spectrometer. Foraging variability by sex and by individual was inferred from the isotopic values. RESULTS: There were no significant differences in the isotopic values of muscle samples between sexes, but there were differences between species. The trophic niche breadth of the two species was similar and overlap was low. A low niche overlap was observed between S. lewini individual vertebrae. We found differences in the δ(15)N values of S. zygaena vertebrae, with lower values in the first group of samples. CONCLUSIONS: Despite these hammerhead shark species inhabiting the same area, there was low trophic niche overlap between species and individuals, due to different individual foraging strategies, according to the carbon and nitrogen isotopic profiles obtained. The use of tissues that retain lifetime isotopic information is useful to complement studies on trophic ecology.

SELECTION OF CITATIONS
SEARCH DETAIL
...