Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
1.
Braz J Microbiol ; 54(4): 2551-2560, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37589929

ABSTRACT

Luiz Rodolpho Travassos, a Brazilian scientist recognized in several areas of research, began his studies in the field of oncology in the late 1970s when he took a sabbatical at the Memorial Sloan Kettering Cancer Center, NY, USA. At that time, the discovery and characterization of human melanoma glycoprotein antigens yielded important publications. This experience allowed 16 years later, and Dr. Travassos founded UNONEX, significantly contributing with discoveries in the area of oncology and training of researchers. This review will address all the contributions of team of researchers who, together with Dr. Travassos, collaborated with investigations into molecules and processes that lead to the development of melanoma.


Subject(s)
Melanoma , Humans , Brazil , Biology
2.
Commun Biol ; 3(1): 105, 2020 03 06.
Article in English | MEDLINE | ID: mdl-32144396

ABSTRACT

Wolbachia can reduce the capability of mosquitoes to transmit infectious diseases to humans and is currently exploited in campaigns for the control of arboviruses, like dengue and Zika. Under the assumption that Wolbachia-mediated activation of insect immunity plays a role in the reduction of mosquito vectorial capacity, we focused our attention on the Wolbachia surface protein (WSP), a potential inductor of innate immunity. We hypothesized that the heterologous expression of this protein in gut- and tissue-associated symbionts may reduce parasite transmission. We thus engineered the mosquito bacterial symbiont Asaia to express WSP (AsaiaWSP). AsaiaWSP induced activation of the host immune response in Aedes aegypti and Anopheles stephensi mosquitoes, and inhibited the development of the heartworm parasite Dirofilaria immitis in Ae. aegypti. These results consolidate previous evidence on the immune-stimulating property of WSP and make AsaiaWSP worth of further investigations as a potential tool for the control of mosquito-borne diseases.


Subject(s)
Acetobacteraceae/metabolism , Aedes/microbiology , Anopheles/microbiology , Bacterial Outer Membrane Proteins/metabolism , Dirofilaria immitis/microbiology , Membrane Proteins/metabolism , Wolbachia/metabolism , Acetobacteraceae/genetics , Aedes/immunology , Animals , Anopheles/parasitology , Bacterial Outer Membrane Proteins/genetics , Dirofilaria immitis/growth & development , Host-Parasite Interactions , Membrane Proteins/genetics , Phagocytosis , Symbiosis , Wolbachia/genetics
3.
Front Oncol ; 9: 25, 2019.
Article in English | MEDLINE | ID: mdl-30740361

ABSTRACT

Microtubules are important drug targets in tumor cells, owing to their role in supporting and determining the cell shape, organelle movement and cell division. The complementarity-determining regions (CDRs) of immunoglobulins have been reported to be a source of anti-tumor peptide sequences, independently of the original antibody specificity for a given antigen. We found that, the anti-Lewis B mAb light-chain CDR1 synthetic peptide Rb44, interacted with microtubules and induced depolymerization, with subsequent degradation of actin filaments, leading to depolarization of mitochondrial membrane-potential, increase of ROS, cell cycle arrest at G2/M, cleavage of caspase-9, caspase-3 and PARP, upregulation of Bax and downregulation of Bcl-2, altogether resulting in intrinsic apoptosis of melanoma cells. The in vitro inhibition of angiogenesis was also an Rb44 effect. Peritumoral injection of Rb44L1 delayed growth of subcutaneously grafted melanoma cells in a syngeneic mouse model. L1-CDRs from immunoglobulins and their interactions with tubulin-dimers were explored to interpret effects on microtubule stability. The opening motion of tubulin monomers allowed for efficient L1-CDR docking, impairment of dimer formation and microtubule dissociation. We conclude that Rb44 VL-CDR1 is a novel peptide that acts on melanoma microtubule network causing cell apoptosis in vitro and melanoma growth inhibition in vivo.

4.
Int J Mol Sci ; 19(12)2018 Nov 28.
Article in English | MEDLINE | ID: mdl-30487461

ABSTRACT

The synthetic peptide T11F (TCRVDHRGLTF), derived from the constant region of human IgM antibodies, proved to exert a significant activity in vitro against yeast strains, including multidrug resistant isolates. Alanine substitution of positively charged residues led to a decrease in candidacidal activity. A more dramatic reduction in activity resulted from cysteine replacement. Here, we investigated the conformational properties of T11F and its alanine-substituted derivatives by circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy. Peptide interaction with Candida albicans cells was studied by confocal and scanning electron microscopy. T11F and most of its derivatives exhibited CD spectra with a negative band around 200 nm and a weaker positive band around 218 nm suggesting, together with NMR coupling constants, the presence of a polyproline II (PPII) helix, a conformational motif involved in a number of biological functions. Analysis of CD spectra revealed a critical role for phenylalanine in preserving the PPII helix. In fact, only the F11A derivative presented a random coil conformation. Interestingly, the loss of secondary structure influenced the rate of killing, which turned out to be significantly reduced. Overall, the obtained results suggest that the PPII conformation contributes in characterising the cell penetrating and fungicidal properties of the investigated peptides.


Subject(s)
Antibodies/chemistry , Cell-Penetrating Peptides/chemistry , Fungicides, Industrial/chemistry , Peptides/chemistry , Candida albicans/drug effects , Cell-Penetrating Peptides/pharmacology , Circular Dichroism , Fungicides, Industrial/pharmacology , Microscopy, Confocal , Microscopy, Electron, Scanning , Nuclear Magnetic Resonance, Biomolecular , Peptides/pharmacology
5.
Front Immunol ; 9: 1132, 2018.
Article in English | MEDLINE | ID: mdl-29875777

ABSTRACT

Mounting an effective immune response against cancer requires the activation of innate and adaptive immune cells. Metastatic melanoma is the most aggressive form of skin cancer. While immunotherapies have shown a remarkable success in melanoma treatment, patients develop resistance by mechanisms that include the establishment of an immune suppressive tumor microenvironment. Thus, understanding how metastatic melanoma cells suppress the immune system is vital to develop effective immunotherapies against this disease. In this study, we find that macrophages (MOs) and dendritic cells (DCs) are suppressed in metastatic melanoma and that the Ig-CDR-based peptide C36L1 is able to restore MOs and DCs' antitumorigenic and immunogenic functions and to inhibit metastatic growth in lungs. Specifically, C36L1 treatment is able to repolarize M2-like immunosuppressive MOs into M1-like antitumorigenic MOs, and increase the number of immunogenic DCs, and activated cytotoxic T cells, while reducing the number of regulatory T cells and monocytic myeloid-derived suppressor cells in metastatic lungs. Mechanistically, we find that C36L1 directly binds to the MIF receptor CD74 which is expressed on MOs and DCs, disturbing CD74 structural dynamics and inhibiting MIF signaling on these cells. Interfering with MIF-CD74 signaling on MOs and DCs leads to a decrease in the expression of immunosuppressive factors from MOs and an increase in the capacity of DCs to activate cytotoxic T cells. Our findings suggest that interfering with MIF-CD74 immunosuppressive signaling in MOs and DCs, using peptide-based immunotherapy can restore the antitumor immune response in metastatic melanoma. Our study provides the rationale for further development of peptide-based therapies to restore the antitumor immune response in metastatic melanoma.


Subject(s)
Antigens, Differentiation, B-Lymphocyte/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Histocompatibility Antigens Class II/metabolism , Immunity , Macrophages/immunology , Macrophages/metabolism , Melanoma/immunology , Melanoma/metabolism , Receptors, Immunologic/metabolism , Signal Transduction , Animals , Antigens, Differentiation, B-Lymphocyte/chemistry , Histocompatibility Antigens Class II/chemistry , Macrophage Migration-Inhibitory Factors/metabolism , Male , Melanoma/pathology , Melanoma, Experimental , Mice , Models, Biological , Models, Molecular , Neoplasm Metastasis , Peptides/immunology , Peptides/metabolism , Protein Binding , Receptors, Immunologic/chemistry , Signal Transduction/drug effects , Structure-Activity Relationship , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
6.
Front Microbiol ; 9: 753, 2018.
Article in English | MEDLINE | ID: mdl-29731744

ABSTRACT

The killer peptide KP is a synthetic decapeptide derived from the sequence of the variable region of a recombinant yeast killer toxin-like microbicidal single-chain antibody. KP proved to exert significant activities against diverse microbial and viral pathogens through different mechanisms of action, but little is known of its effect on apicomplexan protozoa. The aim of the present study was to evaluate the in vitro activity of KP against Toxoplasma gondii, a globally widespread protozoan parasite of great medical interest. The effect of KP treatment and its potential mechanism of action on T. gondii were evaluated by various methods, including light microscopy, quantitative PCR, flow cytometry, confocal microscopy, and transmission electron microscopy. In the presence of KP, the number of T. gondii tachyzoites able to invade Vero cells and the parasite intracellular proliferation were significantly reduced. Morphological observation and analysis of apoptotic markers suggested that KP is able to trigger an apoptosis-like cell death in T. gondii. Overall, our results indicate that KP could be a promising candidate for the development of new anti-Toxoplasma drugs with a novel mechanism of action.

7.
Sci Rep ; 7(1): 10896, 2017 09 07.
Article in English | MEDLINE | ID: mdl-28883642

ABSTRACT

Evidence from previous works disclosed the antimicrobial, antiviral, anti-tumour and/or immunomodulatory activity exerted, through different mechanisms of action, by peptides expressed in the complementarity-determining regions or even in the constant region of antibodies, independently from their specificity and isotype. Presently, we report the selection, from available databases, of peptide sequences encoded by immunoglobulin genes for the evaluation of their potential biological activities. Synthetic peptides representing the translated products of J lambda and J heavy genes proved to act in vitro against pathogenic fungi, entering yeast cells and causing their death, and exerted a therapeutic effect in a Galleria mellonella model of infection by Candida albicans. No haemolytic, cytotoxic and genotoxic effects were observed on mammalian cells. These findings raise the hypothesis that antibodies could be the evolutionary result of the adaptive combination of gene products ancestrally devoted to innate antimicrobial immunity.


Subject(s)
Antimicrobial Cationic Peptides/metabolism , Fungi/drug effects , Fungi/physiology , Immunoglobulins/metabolism , Microbial Viability/drug effects , Animals , Antimicrobial Cationic Peptides/toxicity , Candidiasis/drug therapy , Cell Survival/drug effects , DNA/drug effects , Disease Models, Animal , Hemolysis/drug effects , Lepidoptera , Treatment Outcome
8.
PLoS One ; 12(7): e0181278, 2017.
Article in English | MEDLINE | ID: mdl-28704490

ABSTRACT

Candida albicans is a commensal organism, commonly inhabiting mucosal surfaces of healthy individuals, as a part of the resident microbiota. However, in susceptible hosts, especially hospitalized and/or immunocompromised patients, it may cause a wide range of infections. The presence of abiotic substrates, such as central venous or urinary catheters, provides an additional niche for Candida attachment and persistence, particularly via biofilm development. Furthermore, Candida biofilm is poorly susceptible to most antifungals, including azoles. Here we investigated the effects of a synthetic killer peptide (KP), known to be active in vitro, ex vivo and/or in vivo against different pathogens, on C. albicans biofilm. Together with a scrambled peptide used as a negative control, KP was tested against Candida biofilm at different stages of development. A reference strain, two fluconazole-resistant and two fluconazole-susceptible C. albicans clinical isolates were used. KP-induced C. albicans oxidative stress response and membrane permeability were also analysed. Moreover, the effect of KP on transcriptional profiles of C. albicans genes involved in different stages of biofilm development, such as cell adhesion, hyphal development and extracellular matrix production, was evaluated. Our results clearly show that the treatment with KP strongly affected the capacity of C. albicans to form biofilm and significantly impairs preformed mature biofilm. KP treatment resulted in an increase in C. albicans oxidative stress response and membrane permeability; also, biofilm-related genes expression was significantly reduced. Comparable inhibitory effects were observed in all the strains employed, irrespective of their resistance or susceptibility to fluconazole. Finally, KP-mediated inhibitory effects were observed also against a catheter-associated C. albicans biofilm. This study provides the first evidence on the KP effectiveness against C. albicans biofilm, suggesting that KP may be considered as a potential novel tool for treatment and prevention of biofilm-related C. albicans infections.


Subject(s)
Antifungal Agents/pharmacology , Biofilms/drug effects , Candida albicans/drug effects , Peptides/pharmacology , Single-Chain Antibodies/pharmacology , Antifungal Agents/chemical synthesis , Candida albicans/physiology , Cell Membrane/drug effects , Cell Membrane/metabolism , Fluconazole/pharmacology , Microbial Sensitivity Tests , Oxidative Stress/drug effects , Peptides/chemical synthesis , Permeability/drug effects , Proteoglycans , Single-Chain Antibodies/chemistry , beta-Glucans/chemistry , beta-Glucans/immunology
9.
Methods Mol Biol ; 1625: 97-112, 2017.
Article in English | MEDLINE | ID: mdl-28584986

ABSTRACT

As implied by the idiotypic network theory, the interaction between the functional epitope of a microbicidal molecule (X) and its specific cell-wall receptor (RX) on sensitive microorganisms may be imaged by the bond between the idiotype (Id) of a neutralizing monoclonal antibody (anti-X Ab) and its anti-idiotype (anti-Id) X-like Ab (anti-anti-X Ab). Consequently, anti-X Ab Id may mimic RX acting as a vaccine (idiotypic vaccination) for the elicitation of protective anti-Id Abs with antibiotic activity (antibiobodies).


Subject(s)
Antibodies, Anti-Idiotypic/immunology , Antibodies, Anti-Idiotypic/pharmacology , Antibodies, Fungal/immunology , Antifungal Agents/pharmacology , Fungal Vaccines/immunology , Fungi/immunology , Immunoglobulin Idiotypes/immunology , Mycoses/immunology , Animals , Antibodies, Anti-Idiotypic/isolation & purification , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/pharmacology , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Epitopes/immunology , Female , Immunity, Mucosal , Immunization , Mice , Microbial Sensitivity Tests , Mycoses/drug therapy , Mycoses/microbiology , Rats
10.
Photodiagnosis Photodyn Ther ; 18: 34-38, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28130177

ABSTRACT

BACKGROUND: Studies on photodynamic inactivation against microorganisms had a great development in recent years. The aim of this work was to test the application of different laser wavelengths with or without different photosensitizing dyes on Candida albicans cells in vitro and in photodynamic therapy protocols in vivo in larvae of Galleria mellonella. METHODS: Laser application was realized on C. albicans cells suspended in saline solution or cultured on solid medium for the in vitro study, and in a model of G. mellonella candidal infection for the in vivo study. Three wavelengths (650, 405, and 532nm) were used in continuous mode with different values of applied fluences: 10, 20 and 30J/cm2 for the in vitro study and 10J/cm2 for the in vivo study, without and with photosensitizing dyes. RESULTS: No growth inhibition was obtained on yeast cells in saline solution without photosensitizers. The maximum inhibition of growth (100%) was obtained with 405nm diode laser and curcumin at any used fluence. No growth inhibition was observed for yeast cells cultured on solid medium after laser application without dyes. An inhibition was observed after laser application when curcumin and erythrosine were added to the medium. The survival curves of G. mellonella larvae infected with C. albicans with or without the different dyes and after laser application showed a statistically significant difference (p<0.001) in comparison with the proper control groups. CONCLUSIONS: These results show the efficacy of photodynamic inactivation exploiting a suitable combination of light and dyes against C. albicans and the potential of photodynamic therapy for the treatment of candidal infections.


Subject(s)
Candida albicans/drug effects , Coloring Agents/administration & dosage , Larva/drug effects , Larva/microbiology , Moths/drug effects , Moths/microbiology , Photochemotherapy/methods , Animals , Candida albicans/physiology , Candida albicans/radiation effects , Cell Proliferation/drug effects , Cell Proliferation/radiation effects , Cell Survival/drug effects , Cell Survival/radiation effects , Disinfection/methods , Dose-Response Relationship, Drug , Dose-Response Relationship, Radiation , Lighting/methods , Moths/radiation effects , Photosensitizing Agents/administration & dosage
11.
Sci Rep ; 6: 35018, 2016 10 11.
Article in English | MEDLINE | ID: mdl-27725769

ABSTRACT

A phosphorylated peptide, named K40H, derived from the constant region of IgMs was detected in human serum by liquid chromatography coupled to high-resolution mass spectrometry. Synthetic K40H proved to exert a potent in vitro activity against fungal pathogens, and to inhibit HIV-1 replication in vitro and ex vivo. It also showed a therapeutic effect against an experimental infection by Candida albicans in the invertebrate model Galleria mellonella. K40H represents the proof of concept of the innate role that naturally occurring antibody fragments may exert against infectious agents, shedding a new light upon the posthumous role of antibodies and opening a new scenario on the multifaceted functionality of humoral immunity.


Subject(s)
Candida albicans/drug effects , HIV-1/drug effects , Immunoglobulin Fc Fragments/blood , Immunoglobulin M/chemistry , Anti-Infective Agents/blood , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Chromatography, Liquid , Humans , Immunoglobulin Fc Fragments/chemistry , Immunoglobulin Fc Fragments/pharmacology , Mass Spectrometry , Microbial Sensitivity Tests , Peptide Fragments/blood , Peptide Fragments/chemistry , Peptide Fragments/pharmacology , Phosphorylation , Virus Replication/drug effects
12.
FEBS Open Bio ; 6(9): 885-901, 2016 09.
Article in English | MEDLINE | ID: mdl-27642552

ABSTRACT

Antibody-derived peptides modulate functions of the immune system and are a source of anti-infective and antitumor substances. Recent studies have shown that they comprise amino acid sequences of immunoglobulin complementarity-determining regions, but also fragments of constant regions. VH CDR3 of murine mAb AC-1001 displays antimetastatic activities using B16F10-Nex2 murine melanoma cells in a syngeneic model. The peptide was cytotoxic in vitro in murine and human melanoma cells inducing reactive oxygen species (ROS) and apoptosis by the intrinsic pathway. Signs of autophagy were also suggested by the increased expression of LC3/LC3II and Beclin 1 and by ultrastructural evidence. AC-1001 H3 bound to both G- and F-actin and inhibited tumor cell migration. These results are important evidence of the antitumor activity of Ig CDR-derived peptides.

13.
Future Med Chem ; 8(12): 1413-33, 2016 08.
Article in English | MEDLINE | ID: mdl-27502155

ABSTRACT

In recent years, the increase of invasive fungal infections and the emergence of antifungal resistance stressed the need for new antifungal drugs. Peptides have shown to be good candidates for the development of alternative antimicrobial agents through high-throughput screening, and subsequent optimization according to a rational approach. This review presents a brief overview on antifungal natural peptides of different sources (animals, plants, micro-organisms), peptide fragments derived by proteolytic cleavage of precursor physiological proteins (cryptides), synthetic unnatural peptides and peptide derivatives. Antifungal peptides are schematically reported based on their structure, antifungal spectrum and reported effects. Natural or synthetic peptides and their modified derivatives may represent the basis for new compounds active against fungal infections.


Subject(s)
Antifungal Agents/chemical synthesis , Antifungal Agents/pharmacology , Biological Products/pharmacology , Drug Resistance, Fungal/drug effects , Fungi/drug effects , Mycoses/drug therapy , Peptides/pharmacology , Antifungal Agents/chemistry , Biological Products/chemical synthesis , Biological Products/chemistry , Microbial Sensitivity Tests , Molecular Structure , Peptides/chemical synthesis , Peptides/chemistry
14.
Peptides ; 85: 1-15, 2016 11.
Article in English | MEDLINE | ID: mdl-27575453

ABSTRACT

The present work aims at investigating the mechanism of action of the Rb9 peptide, which contains the VHCDR 3 sequence of anti-sodium-dependent phosphate transport protein 2B (NaPi2B) monoclonal antibody RebMab200 and displayed antitumor properties. Short peptides corresponding to the hypervariable complementarity-determining regions (CDRs) of immunoglobulins have been associated with antimicrobial, antiviral, immunomodulatory and antitumor activities regardless of the specificity of the antibody. We have shown that the CDR derived peptide Rb9 induced substrate hyperadherence, inhibition of cell migration and matrix invasion in melanoma and other tumor cell lines. Rb9 also inhibited metastasis of murine melanoma in a syngeneic mouse model. We found that Rb9 binds to and interferes with Hsp90 chaperone activity causing attenuation of FAK-Src signaling and downregulation of active Rac1 in B16F10-Nex2 melanoma cells. The peptide also bound to an adhesion G-protein coupled receptor, triggering a concentration-dependent synthesis of cAMP and activation of PKA and VASP signaling as well as IP-3 dependent Ca2+ release. Hsp90 is highly expressed on the cell surface of melanoma cells, and synthetic agents that target Hsp90 are promising cancer therapeutic drugs. Based on their remarkable antitumor effects, the CDR-H3-derived peptides from RebMab200, and particularly the highly soluble and stable Rb9, are novel candidates to be further studied as potential antitumor drugs, selectively acting on cancer cell motility and invasion.


Subject(s)
Complementarity Determining Regions/genetics , HSP90 Heat-Shock Proteins/genetics , Melanoma, Experimental/drug therapy , Peptides/genetics , Animals , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , Cell Adhesion/genetics , Cell Adhesion/immunology , Cell Movement/genetics , Complementarity Determining Regions/immunology , HSP90 Heat-Shock Proteins/immunology , Immunoglobulin Variable Region/genetics , Immunoglobulin Variable Region/immunology , Melanoma, Experimental/genetics , Melanoma, Experimental/immunology , Mice , Neoplasm Invasiveness/genetics , Neuropeptides/genetics , Peptides/administration & dosage , Peptides/immunology , Receptors, G-Protein-Coupled/genetics , Sodium-Phosphate Cotransporter Proteins, Type IIb/genetics , Sodium-Phosphate Cotransporter Proteins, Type IIb/immunology , rac1 GTP-Binding Protein/genetics
15.
Antimicrob Agents Chemother ; 60(4): 2435-42, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26856836

ABSTRACT

Synthetic peptides encompassing sequences related to the complementarity-determining regions of antibodies or derived from their constant region (Fc peptides) were proven to exert differential antimicrobial, antiviral, antitumor, and/or immunomodulatory activitiesin vitroand/orin vivo, regardless of the specificity and isotype of the parental antibody. Alanine substitution derivatives of these peptides exhibited unaltered, increased, or decreased candidacidal activitiesin vitro The bioactive IgG-derived Fc N10K peptide (NQVSLTCLVK) spontaneously self-assembles, a feature previously recognized as relevant for the therapeutic activity of another antibody-derived peptide. We evaluated the contribution of each residue to the peptide self-assembling capability by circular-dichroism spectroscopy. The interaction of the N10K peptide and its derivatives withCandida albicanscells was studied by confocal, transmission, and scanning electron microscopy. The apoptosis and autophagy induction profiles in yeast cells treated with the peptides were evaluated by flow cytometry, and the therapeutic efficacy against candidal infection was studied in aGalleria mellonellamodel. Overall, the results indicate a critical role for some residues in the self-assembly process and a correlation of that capability with the candidacidal activities of the peptidesin vitroand their therapeutic effectsin vivo.


Subject(s)
Antifungal Agents/pharmacology , Candida albicans/drug effects , Complementarity Determining Regions/pharmacology , Immunoglobulin G/pharmacology , Peptides/pharmacology , Amino Acid Sequence , Amino Acid Substitution , Animals , Antifungal Agents/chemical synthesis , Apoptosis/drug effects , Autophagy/drug effects , Candida albicans/growth & development , Complementarity Determining Regions/chemistry , Humans , Immunoglobulin G/chemistry , Larva/drug effects , Larva/microbiology , Microbial Sensitivity Tests , Moths/drug effects , Moths/microbiology , Peptides/chemical synthesis , Phosphatidylserines/analysis , Phosphatidylserines/metabolism , Structure-Activity Relationship , Survival Analysis
16.
Toxins (Basel) ; 7(10): 4330-49, 2015 Oct 23.
Article in English | MEDLINE | ID: mdl-26512694

ABSTRACT

Aflatoxins (AFs) are toxic, carcinogenic, immunosuppressive secondary metabolites produced by some Aspergillus species which colonize crops, including many dietary staple foods and feed components. AFB1 is the prevalent and most toxic among AFs. In the liver, it is biotransformed into AFM1, which is then excreted into the milk of lactating mammals, including dairy animals. AFM1 has been shown to be cause of both acute and chronic toxicoses. The presence of AFM1 in milk and dairy products represents a worldwide concern since even small amounts of this metabolite may be of importance as long-term exposure is concerned. Contamination of milk may be mitigated either directly, decreasing the AFM1 content in contaminated milk, or indirectly, decreasing AFB1 contamination in the feed of dairy animals. Current strategies for AFM1 mitigation include good agricultural practices in pre-harvest and post-harvest management of feed crops (including storage) and physical or chemical decontamination of feed and milk. However, no single strategy offers a complete solution to the issue.


Subject(s)
Aflatoxin B1/analysis , Environmental Exposure/prevention & control , Food Contamination , Milk , Aflatoxin B1/biosynthesis , Aflatoxin B1/toxicity , Animal Feed/analysis , Animal Feed/standards , Animals , Aspergillus/drug effects , Aspergillus/growth & development , Aspergillus/metabolism , Biological Control Agents/pharmacology , Crops, Agricultural/microbiology , Environmental Exposure/analysis , Food Contamination/analysis , Food Contamination/prevention & control , Food Storage/methods , Food Storage/standards , Humans , Milk/chemistry , Milk/standards
17.
Sci Rep ; 5: 14310, 2015 Sep 22.
Article in English | MEDLINE | ID: mdl-26391685

ABSTRACT

Short peptide sequences from complementarity-determining regions (CDRs) of different immunoglobulins may exert anti-infective, immunomodulatory and antitumor activities regardless of the specificity of the original monoclonal antibody (mAb). In this sense, they resemble early molecules of innate immunity. C36L1 was identified as a bioactive light-chain CDR1 peptide by screening 19 conserved CDR sequences targeting murine B16F10-Nex2 melanoma. The 17-amino acid peptide is readily taken up by melanoma cells and acts on microtubules causing depolymerization, stress of the endoplasmic reticulum and intrinsic apoptosis. At low concentrations, C36L1 inhibited migration, invasion and proliferation of B16F10-Nex2 cells with cell cycle arrest at G2/M phase, by regulating the PI3K/Akt signaling axis involving Rho-GTPase and PTEN mediation. Peritumor injection of the peptide delayed growth of subcutaneously grafted melanoma cells. Intraperitoneal administration of C36L1 induced a significant immune-response dependent anti-tumor protection in a syngeneic metastatic melanoma model. Dendritic cells stimulated ex-vivo by the peptide and transferred to animals challenged with tumor cells were equally effective. The C36 VL CDR1 peptide is a promising microtubule-interacting drug that induces tumor cell death by apoptosis and inhibits metastases of highly aggressive melanoma cells.


Subject(s)
Antineoplastic Agents/pharmacology , Complementarity Determining Regions/chemistry , Melanoma/metabolism , Melanoma/pathology , Microtubules/metabolism , Peptides/pharmacology , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Disease Models, Animal , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/metabolism , Melanoma/drug therapy , Melanoma/immunology , Melanoma, Experimental , Mice , Microtubules/chemistry , Mitochondria/drug effects , Mitochondria/metabolism , Neoplasm Metastasis , PTEN Phosphohydrolase/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Protein Multimerization/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Tubulin/chemistry , Tubulin/metabolism , rho GTP-Binding Proteins/metabolism
18.
Future Microbiol ; 10(7): 1163-75, 2015.
Article in English | MEDLINE | ID: mdl-26119210

ABSTRACT

This review focuses on antibodies (Abs) and their function in immune protection, with particular emphasis on microbicidal Abs. Some aspects of Abs and Ab-drug conjugates as targeting therapeutic agents are also discussed. The main aim, however, is devoted to Ab-derived peptides modulating functions of the immune system and to the latest experimental evidence of Abs as a source of anti-infective and antitumor peptides derived from their complementarity determining regions and constant regions.


Subject(s)
Anti-Infective Agents , Antibodies, Monoclonal/immunology , Antibodies , Infections/drug therapy , Peptides , Animals , Anti-Infective Agents/chemistry , Anti-Infective Agents/immunology , Anti-Infective Agents/therapeutic use , Antibodies/chemistry , Antibodies/immunology , Antibodies/therapeutic use , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/therapeutic use , Antineoplastic Agents/immunology , Antineoplastic Agents/isolation & purification , Complementarity Determining Regions , Humans , Molecular Targeted Therapy , Peptides/chemistry , Peptides/immunology , Peptides/therapeutic use , Structure-Activity Relationship
19.
J Pept Sci ; 21(5): 370-8, 2015 May.
Article in English | MEDLINE | ID: mdl-25756615

ABSTRACT

Synthetic peptides, representative of sequences related to the complementarity determining regions and constant region of antibodies, proved to exert in vitro, ex vivo and/or in vivo antimicrobial, antiviral, anti-tumour and/or immunomodulatory activities, conceivably mediated by different mechanisms of action and regardless of the specificity and isotype of the belonging immunoglobulin. Antibody-derived peptides can show intrinsic properties of self-aggregation in ß structures, able to assemble on molecular targets and dissociate spontaneously, leading to the formation of hydrogels. Whilst the self-assembled state may provide protection against proteases and the slow kinetic of dissociation assures a release of the active form over time, the receptor affinity is responsible for targeted delivery. Peptides derived from single amino acid substitution of bioactive antibody fragments, adopted as surrogates of natural point mutations, displayed further differential biological activities. Overall, these observations allow to envisage that antibodies could represent an unlimited source of new anti-infective and anti-tumour peptides.


Subject(s)
Antibodies, Monoclonal/chemistry , Peptides/chemistry , Peptides/pharmacology , Amino Acid Substitution , Animals , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Antibodies, Monoclonal/genetics , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Humans , Hydrogels/chemistry , Models, Molecular , Protein Structure, Secondary
20.
PLoS One ; 9(8): e105727, 2014.
Article in English | MEDLINE | ID: mdl-25162681

ABSTRACT

A mouse anti-anti-anti-idiotypic (Id) IgM monoclonal antibody (mAb K20, Ab4), functionally mimicking a Wyckerhamomyces anomalus (Pichia anomala) killer toxin (KT) characterized by fungicidal activity against yeasts presenting specific cell wall receptors (KTR) mainly constituted by ß-1,3-glucan, was produced from animals presenting anti-KT Abs (Ab3) following immunization with a rat IgM anti-Id KT-like mAb (mAb K10, Ab2). MAb K10 was produced by immunization with a KT-neutralizing mAb (mAb KT4, Ab1) bearing the internal image of KTR. MAb K20, likewise mAb K10, proved to be fungicidal in vitro against KT-sensitive Candida albicans cells, an activity neutralized by mAb KT4, and was capable of binding to ß-1,3-glucan. MAb K20 and mAb K10 competed with each other and with KT for binding to C. albicans KTR. MAb K20 was used to identify peptide mimics of KTR by the selection of phage clones from random peptide phage display libraries. Using this strategy, four peptides (TK 1-4) were selected and used as immunogen in mice in the form of either keyhole limpet hemocyanin (KLH) conjugates or peptide-encoding minigenes. Peptide and DNA immunization could induce serum Abs characterized by candidacidal activity, which was inhibited by laminarin, a soluble ß-1,3-glucan, but not by pustulan, a ß-1,6-glucan. These findings show that the idiotypic cascade can not only overcome the barrier of animal species but also the nature of immunogens and the type of technology adopted.


Subject(s)
Antibodies, Anti-Idiotypic/immunology , Candida albicans/drug effects , Candidiasis/prevention & control , Fungal Vaccines/immunology , Peptides/immunology , Vaccination , Amino Acid Sequence , Animals , Antibodies, Anti-Idiotypic/biosynthesis , Antibodies, Anti-Idiotypic/chemistry , Candida albicans/immunology , Candidiasis/immunology , Candidiasis/microbiology , Fungal Proteins/chemistry , Fungal Proteins/immunology , Fungal Vaccines/administration & dosage , Fungal Vaccines/chemistry , Hemocyanins/chemistry , Killer Factors, Yeast/chemistry , Killer Factors, Yeast/immunology , Mice , Molecular Mimicry , Molecular Sequence Data , Mycotoxins/chemistry , Mycotoxins/immunology , Peptide Library , Peptides/administration & dosage , Peptides/chemistry , Pichia/chemistry , Pichia/metabolism , Rats , Receptors, Cell Surface/chemistry , Receptors, Cell Surface/immunology , Vaccines, DNA , Vaccines, Subunit , beta-Glucans/chemistry , beta-Glucans/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...