Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Stroke Cerebrovasc Dis ; 33(6): 107685, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38522756

ABSTRACT

OBJECTIVES: Increased plasma gamma-glutamyl transferase (GGT1) has been identified as a robust and independent risk factor for ischemic stroke (IS), but the molecular mechanisms of the enzyme-disease association are unclear. The present study investigated whether polymorphisms in the GGT1 gene contribute to IS susceptibility. MATERIALS AND METHODS: DNA samples obtained from 1288 unrelated individuals (600 IS patients and 688 controls) were genotyped for common single nucleotide polymorphisms of GGT1 using the MassArray-4 platform. RESULTS: The rs5751909 polymorphism was significantly associated with decreased risk of ischemic stroke regardless sex and age (Pperm ≤ 0.01, dominant genetic model). The haplotype rs4820599A-rs5760489A-rs5751909A showed strong protection against ischemic stroke (OR 0.53, 95 %CI 0.36 - 0.77, Pperm ≤ 0.0001). The protective effect of SNP rs5751909 in the stroke phenotype was successfully replicated in the UK Biobank, SiGN, and ISGC cohorts (P ≤ 0.01). GGT1 polymorphisms showed joint (epistatic) effects on the risk of ischemic stroke, with some known IS-associated GWAS loci (e.g., rs4322086 and rs12646447) investigated in our population. In addition, SNP rs5751909 was found to be strongly associated with a decreased risk of ischemic stroke in non-smokers (OR 0.54 95 %CI 0.39-0.75, Pperm = 0.0002) and non-alcohol abusers (OR 0.43 95 %CI 0.30-0.61, Pperm = 2.0 × 10-6), whereas no protective effects of this SNP against disease risk were observed in smokers and alcohol abusers (Pperm < 0.05). CONCLUSIONS: We propose mechanisms underlying the observed associations between GGT1 polymorphisms and ischemic stroke risk. This pilot study is the first to demonstrate that GGT1 is a novel susceptibility gene for ischemic stroke and provides additional evidence of the genetic contribution to impaired redox homeostasis underlying disease pathogenesis.


Subject(s)
Genetic Association Studies , Genetic Predisposition to Disease , Ischemic Stroke , Phenotype , Polymorphism, Single Nucleotide , Protective Factors , gamma-Glutamyltransferase , Humans , Male , Female , Ischemic Stroke/genetics , Ischemic Stroke/prevention & control , Ischemic Stroke/diagnosis , Ischemic Stroke/epidemiology , Middle Aged , gamma-Glutamyltransferase/blood , gamma-Glutamyltransferase/genetics , Risk Factors , Case-Control Studies , Aged , Non-Smokers , Risk Assessment , Haplotypes , Alcohol Drinking/adverse effects , Alcohol Drinking/genetics
2.
Life (Basel) ; 13(2)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36836853

ABSTRACT

Genome-wide association studies (GWAS) have discovered numerous single nucleotide polymorphisms (SNP) contributing to peripheral artery disease (PAD), but their joint effects with risk factors like cigarette smoking (CS) on disease susceptibility have not been systematically investigated. The present study looked into whether CS mediates the effects of GWAS loci on the development of PAD and atherosclerotic lesions in different arterial beds. DNA samples from 1263 unrelated individuals of Slavic origin including 620 PAD patients and 643 healthy subjects were genotyped by the MassArray-4 system for rs1051730, rs10134584, rs1902341, rs10129758 which are known as PAD-associated GWAS loci. The rs1051730 polymorphism was strongly associated with an increased risk of PAD (p = 5.1 × 10-6), whereas rs1902341 did not show an association with disease risk. The rs1051730 polymorphism was associated with increased plasma levels of LDL cholesterol (p = 0.001), and conferred a greater risk of PAD in cigarette smokers than in nonsmokers (p < 0.01). Interestingly, the rs1902341T allele was associated with an increased risk of PAD in smokers and a decreased disease risk in nonsmokers. SNPs and CS were both linked to unilateral and/or bilateral atherosclerotic lesions of peripheral vessels, as well as the abdominal aorta, coronary, and cerebral arteries. The studied polymorphisms exert pleiotropic and cigarette smoking-mediated effects on atherosclerotic lesions of different arterial beds.

3.
Life (Basel) ; 12(4)2022 Apr 18.
Article in English | MEDLINE | ID: mdl-35455093

ABSTRACT

The purpose of this pilot study was to explore whether polymorphisms in genes encoding the catalytic (GCLC) and modifier (GCLM) subunits of glutamate-cysteine ligase, a rate-limiting enzyme in glutathione synthesis, play a role in the development of ischemic stroke (IS) and the extent of brain damage. A total of 1288 unrelated Russians, including 600 IS patients and 688 age- and sex-matched healthy subjects, were enrolled for the study. Nine common single nucleotide polymorphisms (SNPs) of the GCLC and GCLM genes were genotyped using the MassArray-4 system. SNP rs2301022 of GCLM was strongly associated with a decreased risk of ischemic stroke regardless of sex and age (OR = 0.39, 95%CI 0.24−0.62, p < 0.0001). Two common haplotypes of GCLM possessed protective effects against ischemic stroke risk (p < 0.01), but exclusively in nonsmoker patients. Infarct size was increased by polymorphisms rs636933 and rs761142 of GCLC. The mbmdr method enabled identifying epistatic interactions of GCLC and GCLM gene polymorphisms with known IS susceptibility genes that, along with environmental risk factors, jointly contribute to the disease risk and brain infarct size. Understanding the impact of genes and environmental factors on glutathione metabolism will allow the development of effective strategies for the treatment of ischemic stroke and disease prevention.

4.
Mol Biol Rep ; 49(7): 6145-6154, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35386070

ABSTRACT

BACKGROUND: Glutathione is a tripeptide detoxifying a variety of exogenous and endogenous free radicals and carcinogens, and a deficiency of glutathione is associated with an increased host susceptibility to oxidative stress, a pathological condition implicated in the development and progression of cancer. The catalytic subunit of glutamate-cysteine ligase (GCLC) is an enzyme responsible for the initial and rate-limiting step of glutathione biosynthesis. METHODS AND RESULTS: The aim of this pilot study was to investigate whether genetic variation at the GCLC gene contributes to the risk of colorectal cancer (CRC). DNA samples from 681 unrelated Russian individuals (283 patients with CRC and 398 age- and sex-matched healthy controls) were genotyped for six common functional SNPs of the GCLC gene (SNPs) such as rs12524494, rs17883901, rs606548, rs636933, rs648595 and rs761142 of the GCLC gene using the MassARRAY-4 system. We found that genotype rs606548-C/T is significantly associated with increased risk of CRC regardless of sex and age (OR 2.24; 95% CI 1.24-4.03; P = 0.007, FDR = 0.04). Moreover, ten GCLC genotype combinations showed association with the risk of CRC (P < 0.05). Functional SNP annotation enabled establishing the CRC-associated polymorphisms are associated with a decreased GCLC expression that may be attributed to epigenetic effects of histone modifications operating in a colon-specific manner. CONCLUSIONS: The present study was the first to show that genetic variation at the catalytic subunit of glutamate-cysteine ligase may contribute to the risk of colorectal cancer risk. However, further genetic association studies with a larger sample size are required to substantiate the role of GCLC gene polymorphisms in the development of sporadic colorectal cancer.


Subject(s)
Colorectal Neoplasms , Glutamate-Cysteine Ligase/genetics , Catalytic Domain , Colorectal Neoplasms/genetics , Glutathione/metabolism , Humans , Pilot Projects , Polymorphism, Single Nucleotide/genetics
5.
Biomedicines ; 10(2)2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35203469

ABSTRACT

The study was designed to evaluate putative mechanisms by which lipid-associated loci identified by genome-wide association studies (GWAS) are involved in the molecular pathogenesis of coronary artery disease (CAD) using a comprehensive statistical and bioinformatics analysis. A total of 1700 unrelated individuals of Slavic origin from the Central Russia, including 991 CAD patients and 709 healthy controls were examined. Sixteen lipid-associated GWAS loci were selected from European studies and genotyped using the MassArray-4 system. The polymorphisms were associated with plasma lipids such as total cholesterol (rs12328675, rs4846914, rs55730499, and rs838880), LDL-cholesterol (rs3764261, rs55730499, rs1689800, and rs838880), HDL-cholesterol (rs3764261) as well as carotid intima-media thickness/CIMT (rs12328675, rs11220463, and rs1689800). Polymorphisms such as rs4420638 of APOC1 (p = 0.009), rs55730499 of LPA (p = 0.0007), rs3136441 of F2 (p < 0.0001), and rs6065906 of PLTP (p = 0.002) showed significant associations with the risk of CAD, regardless of sex, age, and body mass index. A majority of the observed associations were successfully replicated in large independent cohorts. Bioinformatics analysis allowed establishing (1) phenotype-specific and shared epistatic gene-gene and gene-smoking interactions contributing to all studied cardiovascular phenotypes; (2) lipid-associated GWAS loci might be allele-specific binding sites for transcription factors from gene regulatory networks controlling multifaceted molecular mechanisms of atherosclerosis.

SELECTION OF CITATIONS
SEARCH DETAIL
...