Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 18547, 2019 12 06.
Article in English | MEDLINE | ID: mdl-31811229

ABSTRACT

Membrane integral ATP synthases produce adenosine triphosphate, the universal "energy currency" of most organisms. However, important details of proton driven energy conversion are still unknown. We present the first high-resolution structure (2.3 Å) of the in meso crystallized c-ring of 14 subunits from spinach chloroplasts. The structure reveals molecular mechanisms of intersubunit contacts in the c14-ring, and it shows additional electron densities inside the c-ring which form circles parallel to the membrane plane. Similar densities were found in all known high-resolution structures of c-rings of F1FO ATP synthases from archaea and bacteria to eukaryotes. The densities might originate from isoprenoid quinones (such as coenzyme Q in mitochondria and plastoquinone in chloroplasts) that is consistent with differential UV-Vis spectroscopy of the c-ring samples, unusually large distance between polar/apolar interfaces inside the c-ring and universality among different species. Although additional experiments are required to verify this hypothesis, coenzyme Q and its analogues known as electron carriers of bioenergetic chains may be universal cofactors of ATP synthases, stabilizing c-ring and prevent ion leakage through it.


Subject(s)
Mitochondrial Proton-Translocating ATPases/ultrastructure , Plant Proteins/ultrastructure , Protein Structure, Quaternary , Adenosine Triphosphate/biosynthesis , Chloroplasts/enzymology , Coenzymes/metabolism , Crystallography, X-Ray , Mitochondrial Proton-Translocating ATPases/metabolism , Models, Molecular , Plant Proteins/metabolism , Protein Conformation , Protein Subunits/metabolism , Spinacia oleracea/enzymology , Ubiquinone/metabolism
2.
Opt Lett ; 36(12): 2296-8, 2011 Jun 15.
Article in English | MEDLINE | ID: mdl-21685998

ABSTRACT

We show that it is possible to produce nearly bandwidth-limited few-cycle attosecond pulses based on periodic resonance interaction of a quasi-monochromatic radiation with the bound states of hydrogenlike atoms. A periodic resonance is provided by a far-off-resonant laser field with intensity much below the atomic ionization threshold via periodic tunnel ionization from the excited states and adiabatic Stark splitting of the excited energy levels. Without external synchronization of the spectral components, it is possible to produce 135 as pulses at 13.5 nm in Li²âº-plasma controlled by radiation of a mode-locked Nd:YAG laser, as well as 1.25 fs pulses at 122 nm in atomic hydrogen controlled by radiation of a CO2 laser.

3.
Phys Rev Lett ; 105(18): 183902, 2010 Oct 29.
Article in English | MEDLINE | ID: mdl-21231106

ABSTRACT

We propose a universal method to produce extremely short pulses of electromagnetic radiation in various spectral ranges. The essence of the method is a resonant interaction of radiation with atoms under the conditions of adiabatic periodic modulation of atomic transition frequencies by a far-off-resonant control laser field via dynamic Stark shift of the atomic levels and proper adjustment of the control field intensity and frequency, as well as the optical depth of the medium. The potential of the method is illustrated by an example in a hydrogenlike atomic system.

SELECTION OF CITATIONS
SEARCH DETAIL
...