Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochemistry ; 39(45): 13862-9, 2000 Nov 14.
Article in English | MEDLINE | ID: mdl-11076527

ABSTRACT

Thiamin diphosphate (ThDP)-dependent enzymes catalyze a range of transformations, such as decarboxylation and ligation. We report a novel spectroscopic assay for detection of some of the ThDP-bound intermediates produced on benzoylformate decarboxylase. Benzoylformate decarboxylase was mixed with its alternate substrate p-nitrobenzoylformic acid on a rapid-scan stopped-flow instrument, resulting in formation of three absorbing species (lambda(max) in parentheses): I(1) (a transient at 620 nm), I(2) (a transient at 400 nm), and I(3) (a stable absorbance with lambda(max) > 730 nm). Analysis of the kinetics of the two transient species supports a model in which a noncovalent complex of the substrate and the enzyme is converted to the first covalent intermediate I(1); the absorbance corresponding to I(1) is probably a charge-transfer band arising from the interaction of the thiamin diphosphate-p-nitrobenzoylformic acid covalent adduct (2-p-nitromandelylThDP) and the enzyme. The rate of disappearance of I(1) parallels the rate of formation of I(2). Chemical models suggest the lambda(max) of I(2) (near 400 nm) to be appropriate to the enamine, a key intermediate in ThDP-dependent reactions resulting from the decarboxylation of the thiamin diphosphate-p-nitrobenzoylformic acid covalent adduct. Therefore, the rate of disappearance of I(1) and/or the appearance of I(2) directly measure the rate of decarboxylation. A relaxation kinetic treatment of the pre-steady-state kinetic data also revealed a hitherto unreported facet of the mechanism, alternating active-sites reactivity. Parallel studies of the His70Ala BFD active-site variant indicate that it cannot form the complex reported by the charge-transfer band (I(1)) at the level of the wild-type protein.


Subject(s)
Carboxy-Lyases/chemistry , Thiamine Pyrophosphate/chemistry , Alanine/genetics , Amino Acid Substitution/genetics , Binding Sites/genetics , Carboxy-Lyases/genetics , Glyoxylates/chemistry , Histidine/genetics , Indicators and Reagents , Kinetics , Mandelic Acids , Nitrobenzoates/chemistry , Spectrophotometry , Substrate Specificity/genetics
2.
Biochemistry ; 37(28): 9918-30, 1998 Jul 14.
Article in English | MEDLINE | ID: mdl-9665697

ABSTRACT

The crystal structure of the thiamin diphosphate (ThDP)-dependent enzyme benzoylformate decarboxylase (BFD), the third enzyme in the mandelate pathway of Pseudomonas putida, has been solved by multiple isomorphous replacement at 1.6 A resolution and refined to an R-factor of 15.0% (free R = 18.6%). The structure of BFD has been compared to that of other ThDP-dependent enzymes, including pyruvate decarboxylase. The overall architecture of BFD resembles that of the other family members, and cofactor- and metal-binding residues are well conserved. Surprisingly, there is no conservation of active-site residues not directly bound to the cofactor. The position of functional groups in the active site may be conserved, however. Three classes of metal ions have been identified in the BFD crystal structure: Ca2+ bound to the cofactor in each subunit, Mg2+ on a 2-fold axis of the tetramer, and Ca2+ at a crystal contact. The structure includes a non-proline cis-peptide bond and an unusually long and regular polyproline type II helix that mediates the main contact between tetramers in the crystal. The high-quality electron-density map allowed the correction of errors totaling more than 10% of the amino acid sequence, which had been predicted from the reported sequence of the mdlC gene. Analysis of the BFD structure suggests that requirements for activation of the cofactor, the nature of the reaction intermediates, and architectural considerations relating to the protein fold have been dominant forces in the evolution of ThDP-dependent enzymes.


Subject(s)
Carboxy-Lyases/chemistry , Thiamine Pyrophosphate/chemistry , Amino Acid Sequence , Binding Sites , Calcium/metabolism , Carboxy-Lyases/metabolism , Catalysis , Cations, Divalent , Conserved Sequence , Crystallization , Crystallography, X-Ray , Magnesium/metabolism , Models, Molecular , Molecular Sequence Data , Peptides/chemistry , Protein Conformation , Protein Structure, Secondary , Protein Structure, Tertiary
SELECTION OF CITATIONS
SEARCH DETAIL
...