Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L604-L617, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38442187

ABSTRACT

Postnatal lung development results in an increasingly functional organ prepared for gas exchange and pathogenic challenges. It is achieved through cellular differentiation and migration. Changes in the tissue architecture during this development process are well-documented and increasing cellular diversity associated with it are reported in recent years. Despite recent progress, transcriptomic and molecular pathways associated with human postnatal lung development are yet to be fully understood. In this study, we investigated gene expression patterns associated with healthy pediatric lung development in four major enriched cell populations (epithelial, endothelial, and nonendothelial mesenchymal cells, along with lung leukocytes) from 1-day-old to 8-yr-old organ donors with no known lung disease. For analysis, we considered the donors in four age groups [less than 30 days old neonates, 30 days to < 1 yr old infants, toddlers (1 to < 2 yr), and children 2 yr and older] and assessed differentially expressed genes (DEG). We found increasing age-associated transcriptional changes in all four major cell types in pediatric lung. Transition from neonate to infant stage showed highest number of DEG compared with the number of DEG found during infant to toddler- or toddler to older children-transitions. Profiles of differential gene expression and further pathway enrichment analyses indicate functional epithelial cell maturation and increased capability of antigen presentation and chemokine-mediated communication. Our study provides a comprehensive reference of gene expression patterns during healthy pediatric lung development that will be useful in identifying and understanding aberrant gene expression patterns associated with early life respiratory diseases.NEW & NOTEWORTHY This study presents postnatal transcriptomic changes in major cell populations in human lung, namely endothelial, epithelial, mesenchymal cells, and leukocytes. Although human postnatal lung development continues through early adulthood, our results demonstrate that greatest transcriptional changes occur in first few months of life during neonate to infant transition. These early transcriptional changes in lung parenchyma are particularly notable for functional maturation and activation of alveolar type II cell genes.


Subject(s)
Lung , Transcriptome , Humans , Lung/growth & development , Lung/metabolism , Infant, Newborn , Infant , Child , Child, Preschool , Male , Female , Sequence Analysis, RNA/methods , Epithelial Cells/metabolism , Gene Expression Regulation, Developmental , Gene Expression Profiling
2.
Genome Announc ; 3(6)2015 Nov 19.
Article in English | MEDLINE | ID: mdl-26586879

ABSTRACT

Here, we report the whole-genome sequences and annotation of 11 endophytic bacteria from poison ivy (Toxicodendron radicans) vine tissue. Five bacteria belong to the genus Pseudomonas, and six single members from other genera were found present in interior vine tissue of poison ivy.

3.
Genome Announc ; 3(4)2015 Jul 30.
Article in English | MEDLINE | ID: mdl-26227604

ABSTRACT

Here, we report the isolation, identification, whole-genome sequencing, and annotation of four Bacillus species from internal stem tissue of the insulin plant Costus igneus, grown in Puerto Rico. The plant is of medicinal importance, as extracts from its leaves have been shown to lower blood sugar levels of hyperglycemic rats.

4.
Genome Announc ; 3(2)2015 Apr 16.
Article in English | MEDLINE | ID: mdl-25883290

ABSTRACT

Here, we report the genome sequences of Bacillus safensis RIT372 and Pseudomonas oryzihabitans RIT370 from Capsicum spp. Annotation revealed gene clusters for the synthesis of bacilysin, lichensin, and bacillibactin and sporulation killing factor (skfA) in Bacillus safensis RIT372 and turnerbactin and carotenoid in Pseudomonas oryzihabitans RIT370.

SELECTION OF CITATIONS
SEARCH DETAIL
...