Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Med Phys ; 43(11): 6129, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27806609

ABSTRACT

PURPOSE: Radiography and tomography using proton beams promise benefit to image guidance and treatment planning for proton therapy. A novel proton tracking detector is described and experimental demonstrations at a therapy facility are reported. A new type of proton CT reconstructing relative "scattering power" rather than "stopping power" is also demonstrated. Notably, this new type of imaging does not require the measurement of the residual energies of the protons. METHODS: A large area, silicon microstrip tracker with high spatial and temporal resolution has been developed by the Proton Radiotherapy Verification and Dosimetry Applications consortium and commissioned using beams of protons at iThemba LABS, Medical Radiation Department, South Africa. The tracker comprises twelve planes of silicon developed using technology from high energy physics with each plane having an active area of ∼10 × 10 cm segmented into 2048 microstrips. The tracker is organized into four separate units each containing three detectors at 60° to one another creating an x-u-v coordinate system. Pairs of tracking units are used to reconstruct vertices for protons entering and exiting a phantom containing tissue equivalent inserts. By measuring the position and direction of each proton before and after the phantom, the nonlinear path for each proton through an object can be reconstructed. RESULTS: Experimental results are reported for tracking the path of protons with initial energies of 125 and 191 MeV. A spherical phantom of 75 mm diameter was imaged by positioning it between the entrance and exit detectors of the tracker. Positions and directions of individual protons were used to create angular distributions and 2D fluence maps of the beam. These results were acquired for 36 equally spaced projections spanning 180°, allowing, for the first time, an experimental CT image based upon the relative scattering power of protons to be reconstructed. CONCLUSIONS: Successful tracking of protons through a thick target (phantom) has demonstrated that the tracker discussed in this paper can provide the precise directional information needed to perform proton radiography and tomography. When synchronized with a range telescope, this could enable the reconstruction of proton CT images of stopping power. Furthermore, by measuring the deflection of many protons through a phantom, it was demonstrated that it is possible to reconstruct a new kind of CT image (scattering power) based upon this tracking information alone.


Subject(s)
Image Processing, Computer-Assisted/methods , Protons , Silicon , Tomography, X-Ray Computed , Humans , Radiometry
2.
Br J Radiol ; 88(1053): 20150134, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26043157

ABSTRACT

Proton radiography and tomography have long promised benefit for proton therapy. Their first suggestion was in the early 1960s and the first published proton radiographs and CT images appeared in the late 1960s and 1970s, respectively. More than just providing anatomical images, proton transmission imaging provides the potential for the more accurate estimation of stopping-power ratio inside a patient and hence improved treatment planning and verification. With the recent explosion in growth of clinical proton therapy facilities, the time is perhaps ripe for the imaging modality to come to the fore. Yet many technical challenges remain to be solved before proton CT scanners become commonplace in the clinic. Research and development in this field is currently more active than at any time with several prototype designs emerging. This review introduces the principles of proton radiography and tomography, their historical developments, the raft of modern prototype systems and the primary design issues.


Subject(s)
Proton Therapy , Radiotherapy Planning, Computer-Assisted/methods , Tomography, X-Ray Computed , Algorithms , History, 20th Century , History, 21st Century , Humans , Proton Therapy/history , Proton Therapy/methods , Tomography, X-Ray Computed/history , Tomography, X-Ray Computed/methods
3.
Phys Med Biol ; 60(8): 3045-63, 2015 Apr 21.
Article in English | MEDLINE | ID: mdl-25803643

ABSTRACT

An advantage of semiconductor-based dedicated cardiac single photon emission computed tomography (SPECT) cameras when compared to conventional Anger cameras is superior energy resolution. This provides the potential for improved separation of the photopeaks in dual radionuclide imaging, such as combined use of (99m)Tc and (123)I . There is, however, the added complexity of tailing effects in the detectors that must be accounted for. In this paper we present a model-based correction algorithm which extracts the useful primary counts of (99m)Tc and (123)I from projection data. Equations describing the in-patient scatter and tailing effects in the detectors are iteratively solved for both radionuclides simultaneously using a maximum a posteriori probability algorithm with one-step-late evaluation. Energy window-dependent parameters for the equations describing in-patient scatter are estimated using Monte Carlo simulations. Parameters for the equations describing tailing effects are estimated using virtually scatter-free experimental measurements on a dedicated cardiac SPECT camera with CdZnTe-detectors. When applied to a phantom study with both (99m)Tc and (123)I, results show that the estimated spatial distribution of events from (99m)Tc in the (99m)Tc photopeak energy window is very similar to that measured in a single (99m)Tc phantom study. The extracted images of primary events display increased cold lesion contrasts for both (99m)Tc and (123)I.


Subject(s)
Algorithms , Iodine Radioisotopes , Radiopharmaceuticals , Technetium , Tomography, Emission-Computed, Single-Photon/methods , Cadmium , Heart/diagnostic imaging , Humans , Models, Theoretical , Phantoms, Imaging , Tellurium , Tomography, Emission-Computed, Single-Photon/instrumentation , Zinc
4.
J Instrum ; 102015 Jun 03.
Article in English | MEDLINE | ID: mdl-29225666

ABSTRACT

Since the first proof of concept in the early 70s, a number of technologies has been proposed to perform proton CT (pCT), as a means of mapping tissue stopping power for accurate treatment planning in proton therapy. Previous prototypes of energy-range detectors for pCT have been mainly based on the use of scintillator-based calorimeters, to measure proton residual energy after passing through the patient. However, such an approach is limited by the need for only a single proton passing through the energy-range detector in a read-out cycle. A novel approach to this problem could be the use of pixelated detectors, where the independent read-out of each pixel allows to measure simultaneously the residual energy of a number of protons in the same read-out cycle, facilitating a faster and more efficient pCT scan. This paper investigates the suitability of CMOS Active Pixel Sensors (APSs) to track individual protons as they go through a number of CMOS layers, forming an energy-range telescope. Measurements performed at the iThemba Laboratories will be presented and analysed in terms of correlation, to confirm capability of proton tracking for CMOS APSs.

5.
Phys Med Biol ; 59(24): 7905-18, 2014 Dec 21.
Article in English | MEDLINE | ID: mdl-25426839

ABSTRACT

A novel approach to proton CT reconstruction using backprojection-then-filtering (BPF) is proposed. A list-mode algorithm is formulated accommodating non-linear proton paths. The analytical form is derived for the deblurring kernel necessary for the filtering step. Further, a finite matrix correction is derived to correct for the limited size of the backprojection matrix. High quantitative accuracy in relative stopping power is demonstrated (⩽0.1%) using Monte Carlo simulations. This accuracy makes the algorithm a promising candidate for future proton CT systems in proton therapy applications. For the purposes of reconstruction, each proton path in the object-of-interest was estimated based on a cubic spline fit to the proton entry and exit vectors. The superior spatial-resolution of the BPF method over the standard filtering-then-backprojection approach is demonstrated. As the BPF algorithm requires only one backprojection and filtering operation on a scan data set, it also offers computational advantages over an iterative reconstruction approach.


Subject(s)
Algorithms , Image Processing, Computer-Assisted/methods , Monte Carlo Method , Phantoms, Imaging , Protons , Signal Processing, Computer-Assisted , Tomography, X-Ray Computed/methods , Computer Simulation , Humans
6.
Phys Med Biol ; 59(11): 2569-81, 2014 Jun 07.
Article in English | MEDLINE | ID: mdl-24785680

ABSTRACT

Despite the early recognition of the potential of proton imaging to assist proton therapy (Cormack 1963 J. Appl. Phys. 34 2722), the modality is still removed from clinical practice, with various approaches in development. For proton-counting radiography applications such as computed tomography (CT), the water-equivalent-path-length that each proton has travelled through an imaged object must be inferred. Typically, scintillator-based technology has been used in various energy/range telescope designs. Here we propose a very different alternative of using radiation-hard CMOS active pixel sensor technology. The ability of such a sensor to resolve the passage of individual protons in a therapy beam has not been previously shown. Here, such capability is demonstrated using a 36 MeV cyclotron beam (University of Birmingham Cyclotron, Birmingham, UK) and a 200 MeV clinical radiotherapy beam (iThemba LABS, Cape Town, SA). The feasibility of tracking individual protons through multiple CMOS layers is also demonstrated using a two-layer stack of sensors. The chief advantages of this solution are the spatial discrimination of events intrinsic to pixelated sensors, combined with the potential provision of information on both the range and residual energy of a proton. The challenges in developing a practical system are discussed.


Subject(s)
Metals/chemistry , Oxides , Proton Therapy/instrumentation , Scintillation Counting/instrumentation , Semiconductors , Cyclotrons , Phantoms, Imaging , Tomography, X-Ray Computed
7.
Phys Med Biol ; 58(13): 4643-57, 2013 Jul 07.
Article in English | MEDLINE | ID: mdl-23780400

ABSTRACT

An algorithm for dynamic multileaf-collimator (dMLC) tracking of a target performing a known a priori, rigid-body motion during volumetric modulated arc therapy (VMAT), has been experimentally validated and applied to investigate the potential of the Agility (Elekta AB, Stockholm, Sweden) multileaf-collimator (MLC) for use in motion-compensated VMAT delivery. For five VMAT patients, dosimetric measurements were performed using the Delta(4) radiation detector (ScandiDos, Uppsala, Sweden) and the accuracy of dMLC tracking was evaluated using a gamma-analysis, with threshold levels of 3% for dose and 3 mm for distance-to-agreement. For a motion trajectory with components in two orthogonal directions, the mean gamma-analysis pass rate without tracking was found to be 58.0%, 59.0% and 60.9% and was increased to 89.1%, 88.3% and 93.1% with MLC tracking, for time periods of motion of 4 s, 6 s and 10 s respectively. Simulations were performed to compare the efficiency of the Agility MLC with the MLCi MLC when used for motion-compensated VMAT delivery for the same treatment plans and motion trajectories. Delivery time increases from a static-tumour to dMLC-tracking VMAT delivery were observed in the range 0%­20% for the Agility, and 0%­57% with the MLCi, indicating that the increased leaf speed of the Agility MLC is beneficial for MLC tracking during lung radiotherapy.


Subject(s)
Artifacts , Radiometry/instrumentation , Radiotherapy, Intensity-Modulated/instrumentation , Equipment Design , Equipment Failure Analysis , Feedback , Humans , Motion , Radiometry/methods , Radiotherapy Dosage , Reproducibility of Results , Sensitivity and Specificity
8.
Phys Med Biol ; 58(5): 1635-48, 2013 Mar 07.
Article in English | MEDLINE | ID: mdl-23422212

ABSTRACT

The AccuLeaf mMLC featuring four multileaf-collimator (MLC) banks has been used for the first time for an experimental comparison of conventional two-bank with novel four-bank dynamic MLC tracking of a two-dimensional sinusoidal respiratory motion. This comparison was performed for a square aperture, and for three conformal treatment apertures from clinical radiotherapy lung cancer patients. The system latency of this prototype tracking system was evaluated and found to be 1.0 s and the frequency at which MLC positions could be updated, 1 Hz, and therefore accurate MLC tracking of irregular patient motion would be difficult with the system in its current form. The MLC leaf velocity required for two-bank-MLC and four-bank-MLC tracking was evaluated for the apertures studied and a substantial decrease was found in the maximum MLC velocity required when four-banks were used for tracking rather than two. A dosimetric comparison of the two techniques was also performed and minimal difference was found between two-bank-MLC and four-bank-MLC tracking. The use of four MLC banks for dynamic MLC tracking is shown to be potentially advantageous for increasing the delivery efficiency compared with two-bank-MLC tracking where difficulties are encountered if large leaf shifts are required to track motion perpendicular to the direction of leaf travel.


Subject(s)
Radiotherapy, Computer-Assisted/methods , Humans , Lung Neoplasms/physiopathology , Lung Neoplasms/radiotherapy , Movement , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Computer-Assisted/instrumentation , Respiration
9.
Med Phys ; 39(3): 1218-26, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22380352

ABSTRACT

PURPOSE: In this paper, the effect on image quality of significantly reducing the primary electron energy of a radiotherapy accelerator is investigated using a novel waveguide test piece. The waveguide contains a novel variable coupling device (rotovane), allowing for a wide continuously variable energy range of between 1.4 and 9 MeV suitable for both imaging and therapy. METHOD: Imaging at linac accelerating potentials close to 1 MV was investigated experimentally and via Monte Carlo simulations. An imaging beam line was designed, and planar and cone beam computed tomography images were obtained to enable qualitative and quantitative comparisons with kilovoltage and megavoltage imaging systems. The imaging beam had an electron energy of 1.4 MeV, which was incident on a water cooled electron window consisting of stainless steel, a 5 mm carbon electron absorber and 2.5 mm aluminium filtration. Images were acquired with an amorphous silicon detector sensitive to diagnostic x-ray energies. RESULTS: The x-ray beam had an average energy of 220 keV and half value layer of 5.9 mm of copper. Cone beam CT images with the same contrast to noise ratio as a gantry mounted kilovoltage imaging system were obtained with doses as low as 2 cGy. This dose is equivalent to a single 6 MV portal image. While 12 times higher than a 100 kVp CBCT system (Elekta XVI), this dose is 140 times lower than a 6 MV cone beam imaging system and 6 times lower than previously published LowZ imaging beams operating at higher (4-5 MeV) energies. CONCLUSIONS: The novel coupling device provides for a wide range of electron energies that are suitable for kilovoltage quality imaging and therapy. The imaging system provides high contrast images from the therapy portal at low dose, approaching that of gantry mounted kilovoltage x-ray systems. Additionally, the system provides low dose imaging directly from the therapy portal, potentially allowing for target tracking during radiotherapy treatment. There is the scope with such a tuneable system for further energy reduction and subsequent improvement in image quality.


Subject(s)
Radiotherapy, Image-Guided/methods , Cone-Beam Computed Tomography , Electrons , Phantoms, Imaging , Radiometry
10.
Phys Med Biol ; 56(23): 7541-54, 2011 Dec 07.
Article in English | MEDLINE | ID: mdl-22079979

ABSTRACT

A model has been developed to simulate volumetric modulated arc therapy (VMAT) delivery for Elekta control systems. The model was experimentally validated for static-tumour VMAT delivery and has been applied to the investigation of motion compensation with dynamic multileaf collimator (dMLC) delivery tracking for a series of VMAT lung treatment plans at various control point spacings for five patients. The relative increase in treatment time with dMLC tracking was calculated for four 1D rigid-body motion trajectories, and the effect of the control point spacing, the MLC leaf speed and an increased number of dose levels on the dMLC tracking delivery time evaluated. It has been observed that a faster leaf speed is advantageous for motion trajectories with shorter time periods and larger amplitudes. The accuracy of dMLC tracking was found to increase with a decreased control point spacing and is dependent on the amplitude and time period of the motion trajectory of the target. dMLC tracking is shown to be a promising emerging technology which can confer advantage over breath-hold motion-compensation techniques which more drastically reduce the efficiency of VMAT and are more invasive for the patient.


Subject(s)
Models, Biological , Radiotherapy, Computer-Assisted/methods , Algorithms , Humans , Lung Neoplasms/physiopathology , Lung Neoplasms/radiotherapy , Movement , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Reproducibility of Results , Time Factors
11.
Phys Med Biol ; 56(14): 4453-64, 2011 Jul 21.
Article in English | MEDLINE | ID: mdl-21719950

ABSTRACT

Computed tomography images have been acquired using an experimental (low atomic number (Z) insert) megavoltage cone-beam imaging system. These images have been compared with standard megavoltage and kilovoltage imaging systems. The experimental system requires a simple modification to the 4 MeV electron beam from an Elekta Precise linac. Low-energy photons are produced in the standard medium-Z electron window and a low-Z carbon electron absorber located after the window. The carbon electron absorber produces photons as well as ensuring that all remaining electrons from the source are removed. A detector sensitive to diagnostic x-ray energies is also employed. Quantitative assessment of cone-beam computed tomography (CBCT) contrast shows that the low-Z imaging system is an order of magnitude or more superior to a standard 6 MV imaging system. CBCT data with the same contrast-to-noise ratio as a kilovoltage imaging system (0.15 cGy) can be obtained in doses of 11 and 244 cGy for the experimental and standard 6 MV systems, respectively. Whilst these doses are high for everyday imaging, qualitative images indicate that kilovoltage like images suitable for patient positioning can be acquired in radiation doses of 1-8 cGy with the experimental low-Z system.


Subject(s)
Cone-Beam Computed Tomography/methods , Humans , Phantoms, Imaging
12.
Phys Med Biol ; 56(6): 1837-51, 2011 Mar 21.
Article in English | MEDLINE | ID: mdl-21358018

ABSTRACT

Scatter in a detector and its housing can result in image degradation. Typically, such scatter leads to a low-spatial frequency 'glare' superimposed on the primary signal. We infer the glare-spread function (GSF) of an amorphous-silicon flat-panel detector via an edge-spread technique. We demonstrate that this spread (referred to as 'scatter-glare' herein) causes a low-spatial frequency drop in the associated modulation-transfer function. This results in a compression of the range of reconstructed CT (computed tomography) numbers and is an impediment to accurate CT-number calibration. We show that it can also lead to visual artefacts. This explains previously unresolved CT-number discrepancies in an earlier work (Poludniowski et al 2009 Phys. Med. Biol. 54 3847). We demonstrate that after deconvolving the GSF from the projection images, in conjunction with a correction for phantom-scatter, the CT-number discrepancies disappear. We show results for an in-house-built phantom with inserts of tissue-equivalent materials and for a patient scan. We conclude that where scatter-glare has not been accounted for, the calibration of cone-beam CT numbers to material density will be compromised. The scatter-glare measurement method we propose is simple and requires no special equipment. The deconvolution process is also straightforward and relatively quick (60 ms per projection on a desktop PC).


Subject(s)
Cone-Beam Computed Tomography/methods , Scattering, Radiation , Silicon/chemistry , Calibration , Cone-Beam Computed Tomography/instrumentation , Phantoms, Imaging
13.
Phys Med Biol ; 55(21): N495-506, 2010 Nov 07.
Article in English | MEDLINE | ID: mdl-20938068

ABSTRACT

In this note it is shown how the use of a rotate-translate methodology employing only jaws, which move dynamically with the beam continuously on, can lead to a delivery of a two-dimensional intensity-modulated beam wherein the modulation is spatially slowly varying. All that is necessary is that a pair of jaws sweep across the face of an accelerator with the aperture between them suitably varying in width and defined by a position-time trajectory function for each jaw. This is then repeated, at the same gantry angle, with the jaws rotated to a different head twist and with a different jaw-pair trajectory for a number of sequential head twists. The result of superposing the individual beams at the same gantry angle is a two-dimensional variation of fluence at this gantry angle. A powerful theorem is developed which shows that there is an infinity of jaw trajectories for some specified number of head twists, each of which corresponds to the same delivered two-dimensional modulated beam.


Subject(s)
Radiotherapy, Intensity-Modulated/methods , Rotation , Algorithms , Software
14.
Phys Med Biol ; 55(19): 5635-51, 2010 Oct 07.
Article in English | MEDLINE | ID: mdl-20826901

ABSTRACT

Volumetric-modulated arc therapy (VMAT), a form of intensity-modulated arc therapy (IMAT), has become a topic of research and clinical activity in recent years. As a form of arc therapy, portal images acquired during the treatment fraction form a (partial) Radon transform of the patient. We show that these portal images, when used in a modified global cone-beam filtered backprojection (FBP) algorithm, allow a surprisingly recognizable CT-volume to be reconstructed. The possibility of distinguishing anatomy in such VMAT-CT reconstructions suggests that this could prove to be a valuable treatment position-verification tool. Further, some potential for local-tomography techniques to improve image quality is shown.


Subject(s)
Image Processing, Computer-Assisted/methods , Radiotherapy, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated , Tomography, X-Ray Computed/methods , Esophageal Neoplasms/diagnostic imaging , Esophageal Neoplasms/radiotherapy , Humans
15.
Phys Med Biol ; 55(8): L21-7, 2010 Apr 21.
Article in English | MEDLINE | ID: mdl-20348607

ABSTRACT

IMRT can be delivered by jaws only (JO) provided some compromises are accepted. In this letter it is shown how the use of a rotate-translate methodology (ROTJO), also employing only jaws, can lead to the delivery of a two-dimensional intensity-modulated beam wherein the modulation is spatially slowly varying.


Subject(s)
Radiotherapy, Intensity-Modulated/methods , Rotation , Feasibility Studies , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated/instrumentation
16.
Phys Med Biol ; 54(22): 6931-42, 2009 Nov 21.
Article in English | MEDLINE | ID: mdl-19887715

ABSTRACT

Monte Carlo simulation is the gold standard method for modelling scattering processes in medical x-ray imaging. General-purpose Monte Carlo codes, however, typically use the independent atom approximation (IAA). This is known to be inaccurate for Rayleigh scattering, for many materials, in the forward direction. This work addresses whether the IAA is sufficient for the typical modelling tasks in medical kilovoltage x-ray imaging. As a means of comparison, we incorporate a more realistic 'interference function' model into a custom-written Monte Carlo code. First, we conduct simulations of scatter from isolated voxels of soft tissue, adipose, cortical bone and spongiosa. Then, we simulate scatter profiles from a cylinder of water and from phantoms of a patient's head, thorax and pelvis, constructed from diagnostic-quality CT data sets. Lastly, we reconstruct CT numbers from simulated sets of projection images and investigate the quantitative effects of the approximation. We show that the IAA can produce errors of several per cent of the total scatter, across a projection image, for typical x-ray beams and patients. The errors in reconstructed CT number, however, for the phantoms simulated, were small (typically < 10 HU). The IAA can therefore be considered sufficient for the modelling of scatter correction in CT imaging. Where accurate quantitative estimates of scatter in individual projection images are required, however, the appropriate interference functions should be included.


Subject(s)
Algorithms , Models, Biological , Radiographic Image Enhancement/methods , Radiographic Image Interpretation, Computer-Assisted/methods , Computer Simulation , Humans , Reproducibility of Results , Scattering, Radiation , Sensitivity and Specificity
17.
Phys Med Biol ; 54(19): N433-8, 2009 Oct 07.
Article in English | MEDLINE | ID: mdl-19724100

ABSTRACT

A software program, SpekCalc, is presented for the calculation of x-ray spectra from tungsten anode x-ray tubes. SpekCalc was designed primarily for use in a medical physics context, for both research and education purposes, but may also be of interest to those working with x-ray tubes in industry. Noteworthy is the particularly wide range of tube potentials (40-300 kVp) and anode angles (recommended: 6-30 degrees) that can be modelled: the program is therefore potentially of use to those working in superficial/orthovoltage radiotherapy, as well as diagnostic radiology. The utility is free to download and is based on a deterministic model of x-ray spectrum generation (Poludniowski 2007 Med. Phys. 34 2175). Filtration can be applied for seven materials (air, water, Be, Al, Cu, Sn and W). In this note SpekCalc is described and illustrative examples are shown. Predictions are compared to those of a state-of-the-art Monte Carlo code (BEAMnrc) and, where possible, to an alternative, widely-used, spectrum calculation program (IPEM78).


Subject(s)
Photons , Software , Tungsten , Electrodes , Monte Carlo Method , Spectrum Analysis , X-Rays
18.
Phys Med Biol ; 54(12): 3847-64, 2009 Jun 21.
Article in English | MEDLINE | ID: mdl-19491449

ABSTRACT

A new method is proposed for scatter-correction of cone-beam CT images. A coarse reconstruction is used in initial iteration steps. Modelling of the x-ray tube spectra and detector response are included in the algorithm. Photon diffusion inside the imaging subject is calculated using the Monte Carlo method. Photon scoring at the detector is calculated using forced detection to a fixed set of node points. The scatter profiles are then obtained by linear interpolation. The algorithm is referred to as the coarse reconstruction and fixed detection (CRFD) technique. Scatter predictions are quantitatively validated against a widely used general-purpose Monte Carlo code: BEAMnrc/EGSnrc (NRCC, Canada). Agreement is excellent. The CRFD algorithm was applied to projection data acquired with a Synergy XVI CBCT unit (Elekta Limited, Crawley, UK), using RANDO and Catphan phantoms (The Phantom Laboratory, Salem NY, USA). The algorithm was shown to be effective in removing scatter-induced artefacts from CBCT images, and took as little as 2 min on a desktop PC. Image uniformity was greatly improved as was CT-number accuracy in reconstructions. This latter improvement was less marked where the expected CT-number of a material was very different to the background material in which it was embedded.


Subject(s)
Algorithms , Artifacts , Cone-Beam Computed Tomography/methods , Radiographic Image Enhancement/methods , Radiographic Image Interpretation, Computer-Assisted/methods , Data Interpretation, Statistical , Monte Carlo Method , Reproducibility of Results , Scattering, Radiation , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...