Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 51(6): 1668-80, 2008 Mar 27.
Article in English | MEDLINE | ID: mdl-18324759

ABSTRACT

We have previously shown N-arylnaphthamides can be potent inhibitors of vascular endothelial growth factor receptors (VEGFRs). N-Alkyl and N-unsubstituted naphthamides were prepared and found to yield nanomolar inhibitors of VEGFR-2 (KDR) with an improved selectivity profile against a panel of tyrosine and serine/threonine kinases. The inhibitory activity of this series was retained at the cellular level. Naphthamides 3, 20, and 22 exhibited good pharmacokinetics following oral dosing and showed potent inhibition of VEGF-induced angiogenesis in the rat corneal model. Once-daily oral administration of 22 for 14 days led to 85% inhibition of established HT29 colon cancer and Calu-6 lung cancer xenografts at doses of 10 and 20 mg/kg, respectively.


Subject(s)
Antineoplastic Agents/pharmacology , Endothelial Cells/drug effects , Naphthalenes/pharmacology , Protein Kinase Inhibitors/pharmacology , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Administration, Oral , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Corneal Neovascularization/blood , Crystallography, X-Ray , Dose-Response Relationship, Drug , Drug Design , Drug Evaluation, Preclinical , Female , Humans , Inhibitory Concentration 50 , Injections, Intravenous , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Microsomes, Liver/drug effects , Models, Molecular , Molecular Structure , Naphthalenes/chemical synthesis , Naphthalenes/chemistry , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Rats , Rats, Sprague-Dawley , Reproducibility of Results , Stereoisomerism , Structure-Activity Relationship
2.
J Med Chem ; 51(6): 1649-67, 2008 Mar 27.
Article in English | MEDLINE | ID: mdl-18324761

ABSTRACT

A series of naphthyl-based compounds were synthesized as potential inhibitors of vascular endothelial growth factor (VEGF) receptors. Investigations of structure-activity relationships led to the identification of a series of naphthamides that are potent inhibitors of the VEGF receptor tyrosine kinase family. Numerous analogues demonstrated low nanomolar inhibition of VEGF-dependent human umbilical vein endothelial cell (HUVEC) proliferation, and of these several compounds possessed favorable pharmacokinetic (PK) profiles. In particular, compound 48 demonstrated significant antitumor efficacy against established HT29 human colon adenocarcinoma xenografts implanted in athymic mice. A full account of the preparation, structure-activity relationships, pharmacokinetic properties, and pharmacology of analogues within this series is presented.


Subject(s)
Antineoplastic Agents/pharmacology , Endothelial Cells/drug effects , Naphthalenes/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Receptors, Vascular Endothelial Growth Factor/antagonists & inhibitors , Administration, Oral , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Corneal Neovascularization/blood , Crystallography, X-Ray , Dose-Response Relationship, Drug , Drug Design , Drug Evaluation, Preclinical , Female , Humans , Inhibitory Concentration 50 , Injections, Intravenous , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Microsomes, Liver/drug effects , Models, Molecular , Molecular Structure , Naphthalenes/chemical synthesis , Naphthalenes/chemistry , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Rats , Rats, Sprague-Dawley , Reproducibility of Results , Stereoisomerism , Structure-Activity Relationship
3.
J Med Chem ; 51(6): 1695-705, 2008 Mar 27.
Article in English | MEDLINE | ID: mdl-18311900

ABSTRACT

Angiogenesis is vital for solid tumor growth, and its prevention is a proven strategy for the treatment of disease states such as cancer. The vascular endothelial growth factor (VEGF) pathway provides several opportunities by which small molecules can act as inhibitors of endothelial proliferation and migration. Critical to these processes is signaling through VEGFR-2 or the kinase insert domain receptor (KDR) upon stimulation by its ligand VEGF. Herein, we report the discovery of 2,3-dihydro-1,4-benzoxazines as inhibitors of intrinsic KDR activity (IC 50 < 0.1 microM) and human umbilical vein endothelial cell (HUVEC) proliferation with IC 50 < 0.1 microM. More specifically, compound 16 was identified as a potent (KDR: < 1 nM and HUVEC: 4 nM) and selective inhibitor that exhibited efficacy in angiogenic in vivo models. In addition, this series of molecules is typically well-absorbed orally, further demonstrating the 2,3-dihydro-1,4-benzoxazine moiety as a promising platform for generating kinase-based antiangiogenic therapeutic agents.


Subject(s)
Angiogenesis Inhibitors/administration & dosage , Benzoxazines/administration & dosage , Neoplasms/blood supply , Neovascularization, Pathologic/prevention & control , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Administration, Oral , Angiogenesis Inhibitors/chemical synthesis , Angiogenesis Inhibitors/chemistry , Animals , Benzoxazines/chemical synthesis , Benzoxazines/chemistry , Biological Availability , Cell Line , Cell Proliferation/drug effects , Corneal Neovascularization/blood , Crystallography, X-Ray , Dose-Response Relationship, Drug , Endothelial Cells/drug effects , Female , Humans , Injections, Subcutaneous , Ligands , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Models, Animal , Models, Molecular , Molecular Structure , Rats , Rats, Sprague-Dawley , Stereoisomerism , Structure-Activity Relationship , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...