Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Genes (Basel) ; 14(11)2023 Nov 09.
Article in English | MEDLINE | ID: mdl-38002999

ABSTRACT

Pathogenic variants in the RPE65 gene cause the only known form of inherited retinal degenerations (IRDs) that are prone to gene therapy. The current study is aimed at the evaluation of the prevalence of RPE65-associated retinopathy in the Russian Federation, the characterization of known variants in the RPE65 gene, and the establishment of the specificities of the mutation spectrum in Russian patients. METHODS: The analysis was carried out on blood samples obtained from 1053 non-related IRDs patients. The analysis, which consisted of 211 genes, was carried out based on the method of massive parallel sequencing (MPS) for all probands. Variant validation, as well as biallelic status verification, were carried out using direct automated Sanger sequencing. The number of copies of RPE65 exons 1-14 was analyzed with quantitative MLPA using an MRC-Holland SALSA MLPA probemix. RESULTS: Out of 1053 non-related patients, a molecular genetic diagnosis of IRDs has been confirmed in 474 cases, including 25 (5.3%) patients with RPE65-associated retinopathy. We detected 26 variants in the RPE65 gene, nine of which have not been previously described in the literature. The most common mutations in the Russian population were c.304G>T/p.(Glu102*), c.370C>T/p.(Arg124*), and c.272G>A/p.(Arg91Gln), which comprised 41.8% of all affected chromosomes. CONCLUSIONS: The current study shows that pathogenic variants in the RPE65 gene contribute significantly to the pathogenesis of IRDs and comprise 5.3% of all patients with a confirmed molecular genetic diagnosis. This study allowed for the formation of a cohort for target therapy of the disorder; such therapy has already been carried out for some patients.


Subject(s)
Retinal Degeneration , Humans , Retinal Degeneration/genetics , Mutation , Exons , Molecular Biology , Russia
2.
Int J Mol Sci ; 24(22)2023 Nov 14.
Article in English | MEDLINE | ID: mdl-38003474

ABSTRACT

Pathogenic CFTR variants cause cystic fibrosis (CF), and CF-related disorders (CF-RD), including bilateral aplasia of the vas deferens (CBAVD). The spectrum of clinical manifestations depends on the CFTR genotype. The frequency and spectrum of the CFTR variants vary between populations and clinical groups. CFTR variants and genotypes were analyzed in Russian men with CF (n = 546) and CBAVD syndrome (n = 125). Pathogenic variants were detected in 93.95% and 39.2% of the CF and CBAVD alleles, respectively. The most frequent c.1521_1523del (F508del; p.Phe508del) variant was found in 541 (49.5%) CF alleles. A total of 162 CFTR genotypes were revealed in CF patients, including 152 homozygous and 394 compound-heterozygous. The most common CF-genotype was F508del/F508del (24.9%). Other frequent CF-genotypes were F508del/3849+10kbC>T, F508del/CFTRdele2,3, and F508del/E92K. CF-causing variants and/or 5T allele were found in 88% of CBAVD patients: 5T/CFTRmut (48.0%), CFTRmut/N (17.6%), CFTRmut/CFTRmut (6.4%), 5T/5T (10.4%), 5T/N (5.6%) and N/N (12.0%), with the most common CBAVD-genotype being F508del/5T (29.6%). The allele frequencies of F508del, CFTRdele2,3 394delTT, and 3849+10kbC>T were significantly higher in CF patients. L138ins/L138ins, 2184insA/E92K, and L138ins/N genotypes were found in CBAVD, but not in CF patients. The results indicate certain differences in the frequency of some CFTR variants and genotypes in Russian CF and CBAVD patients.


Subject(s)
Cystic Fibrosis , Male , Humans , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Vas Deferens , Mutation , Genotype , Russia
3.
Genes (Basel) ; 14(7)2023 07 07.
Article in English | MEDLINE | ID: mdl-37510311

ABSTRACT

(1) Introduction: Pathogenic variants in the CFTR (Cystic Fibrosis Transmembrane conductance Regulator, OMIM: 602421) gene cause Cystic Fibrosis (CF, OMIM: 219700) and CF-related disorders (CF-RD), often accompanied by obstructive azoospermia due to congenital bilateral aplasia of vas deferens (CBAVD, OMIM: 277180) in male patients. The L138ins (c.413_415dup; p. (Leu138dup)) is a mild variant in the CFTR gene that is relatively common among CF-patients in Slavic populations. The frequency of this variant in Russian infertile men has not been sufficiently studied; (2) Materials and Methods: The sample consisted of 6033 Russian infertile men. The patients were tested for 22 common in Russian populations pathogenic variants of the CFTR gene and the IVS9Tn-polymorphic locus of the intron 9. Molecular-genetic studies were performed using amplified fragment length polymorphism (AFLP-PCR), multiplex ligation-dependent probe amplification (MLPA), and nested PCR (for analysis of the IVS9Tn-polymorphic locus); (3) Results: Pathogenic variants in the CFTR were detected in 3.9% of patients. The most frequent variants were F508del and CFTRdele2.3(21kb), accounted for 61.0% and 7.1% of detected variants, respectively. The L138ins variant was detected in 17 (0.28%) individuals: one of them was homozygous, 10 patients were heterozygous, and 6 patients were compound-heterozygous (F508del/L138ins, n = 4; L138ins/N1303K, n = 1; L138ins/5T, n = 1). Two pathogenic CF-causing variants in the CFTR gene were detected in 8 patients, including 7 compound heterozygous (F508del/L138ins, n = 4; F508del/N1303K, n = 1; 2184insA/E92K, n = 1; 3849+10kbC>T/E92K, n = 1) and one homozygous (L138ins/L138ins). The L138ins variant was found in 7 out of 16 (43.75%) chromosomes in six of these patients. The most common pathogenic variant, F508del, was identified in five out of them, in 5 of 16 (31.25%) chromosomes. The allele frequency (AF) of the L138ins variant in the sample has been found to be 0.0014.; (4) Conclusions: The L138ins variant of the CFTR gene is the third most common variant after F508del and CFTRdele2.3(kb) among Russian infertile men.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Infertility, Male , Humans , Male , Amplified Fragment Length Polymorphism Analysis , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Gene Frequency , Mutation , Russia/epidemiology , Infertility, Male/genetics
4.
Sci Rep ; 7(1): 1651, 2017 05 10.
Article in English | MEDLINE | ID: mdl-28490793

ABSTRACT

One of the major challenges to the widespread adoption of plasmonic and nano-optical devices in real-life applications is the difficulty to mass-fabricate nano-optical antennas in parallel and reproducible fashion, and the capability to precisely place nanoantennas into devices with nanometer-scale precision. In this study, we present a solution to this challenge using the state-of-the-art ultraviolet nanoimprint lithography (UV-NIL) to fabricate functional optical transformers onto the core of an optical fiber in a single step, mimicking the 'campanile' near-field probes. Imprinted probes were fabricated using a custom-built imprinter tool with co-axial alignment capability with sub <100 nm position accuracy, followed by a metallization step. Scanning electron micrographs confirm high imprint fidelity and precision with a thin residual layer to facilitate efficient optical coupling between the fiber and the imprinted optical transformer. The imprinted optical transformer probe was used in an actual NSOM measurement performing hyperspectral photoluminescence mapping of standard fluorescent beads. The calibration scans confirmed that imprinted probes enable sub-diffraction limited imaging with a spatial resolution consistent with the gap size. This novel nano-fabrication approach promises a low-cost, high-throughput, and reproducible manufacturing of advanced nano-optical devices.

5.
Nanotechnology ; 25(32): 325302, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-25060823

ABSTRACT

We report a novel nanofabrication method to fabricate printable integrated circuits with a high refractive index working in the visible wavelength range. The printable planar ligthwave circuits are directly imprinted by ultra-violet nanoimprinting into functional TiO2-based resist on the top of planar waveguide core films. The printed photonic circuits are composed of several elementary components including ridge waveguides, light splitters and digital planar holograms. Multi-mode ridge waveguides with propagation losses around 40 dB cm(-1) at 660 nm wavelength, and, on-chip demultiplexers operated in the visible range with 100 channels and a spectral channel spacing around 0.35 nm are successfully demonstrated.

SELECTION OF CITATIONS
SEARCH DETAIL
...