Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 13(12): e10611, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38089895

ABSTRACT

The richness and composition of a small mammal community inhabiting semiarid California oak woodland may be changing in response to climate change, but we know little about the causes or consequence of these changes. We applied a capture-mark-recapture model to 17 years (1997-2013) of live trapping data to estimate species-specific abundances. The big-eared woodrat was the most frequently captured species in the area, contributing 58% of total captures. All small mammal populations exhibited seasonal fluctuations, whereas those of the California mouse, brush mouse, and pinyon mouse declined during the study period. We also applied a multispecies dynamic occupancy model to our small mammal detection history data to estimate species richness, occupancy (ψ), detection (p), local extinction (ϵ), and colonization (γ) probabilities, and to discern factors affecting these parameters. We found that ψ decreased from 0.369 ± 0.088 in 1997 to 0.248 ± 0.054 in 2013; γ was lower during the dry season (May-September) than the wet season (October-April) and was positively influenced by total seasonal rainfall (slope parameter, ß = 0.859 ± 0.371; 95% CI = 0.132-1.587). Mean mammalian species richness decreased from 11.943 ± 0.461 in 1997 to 7.185 ± 0.425 in 2013. With highly variable climatic patterns expected in the future, especially increased frequency and intensity of droughts, it is important to monitor small mammal communities inhabiting threatened California oak woodlands.

2.
Sci Adv ; 8(26): eabm7548, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35767621

ABSTRACT

Grouping is ubiquitous across animal taxa and environments. Safety in numbers is perhaps the most cited reason for grouping, yet this fundamental tenet of ecological theory has rarely been tested in wild populations. We analyzed a multidecadal dataset of Pacific salmon at sea and found that individuals in larger groups had lower predation risk; within groups of fish, size outliers (relatively small and large fish) had increased predation risk. For some species, grouping decreased foraging success, whereas for other species, grouping increased foraging success, indicating that safety competition trade-offs differed among species. These results indicate that survival and growth depend on group size; understanding the relationship between group size distributions and population size may be critical to unraveling ecology and population dynamics for marine fishes.

3.
Ecol Evol ; 11(18): 12529-12541, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34594518

ABSTRACT

In semi-arid environments, aperiodic rainfall pulses determine plant production and resource availability for higher trophic levels, creating strong bottom-up regulation. The influence of climatic factors on population vital rates often shapes the dynamics of small mammal populations in such resource-restricted environments. Using a 21-year biannual capture-recapture dataset (1993 to 2014), we examined the impacts of climatic factors on the population dynamics of the brush mouse (Peromyscus boylii) in semi-arid oak woodland of coastal-central California. We applied Pradel's temporal symmetry model to estimate capture probability (p), apparent survival (φ), recruitment (f), and realized population growth rate (λ) of the brush mouse and examined the effects of temperature, rainfall, and El Niño on these demographic parameters. The population was stable during the study period with a monthly realized population growth rate of 0.993 ± SE 0.032, but growth varied over time from 0.680 ± 0.054 to 1.450 ± 0.083. Monthly survival estimates averaged 0.789 ± 0.005 and monthly recruitment estimates averaged 0.175 ± 0.038. Survival probability and realized population growth rate were positively correlated with rainfall and negatively correlated with temperature. In contrast, recruitment was negatively correlated with rainfall and positively correlated with temperature. Brush mice maintained their population through multiple coping strategies, with high recruitment during warmer and drier periods and higher survival during cooler and wetter conditions. Although climatic change in coastal-central California will likely favor recruitment over survival, varying strategies may serve as a mechanism by which brush mice maintain resilience in the face of climate change. Our results indicate that rainfall and temperature are both important drivers of brush mouse population dynamics and will play a significant role in predicting the future viability of brush mice under a changing climate.

SELECTION OF CITATIONS
SEARCH DETAIL
...