Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Cell ; 42(3): 444-463.e10, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38428410

ABSTRACT

Follicular lymphoma (FL) is a generally incurable malignancy that evolves from developmentally blocked germinal center (GC) B cells. To promote survival and immune escape, tumor B cells undergo significant genetic changes and extensively remodel the lymphoid microenvironment. Dynamic interactions between tumor B cells and the tumor microenvironment (TME) are hypothesized to contribute to the broad spectrum of clinical behaviors observed among FL patients. Despite the urgent need, existing clinical tools do not reliably predict disease behavior. Using a multi-modal strategy, we examined cell-intrinsic and -extrinsic factors governing progression and therapeutic outcomes in FL patients enrolled onto a prospective clinical trial. By leveraging the strengths of each platform, we identify several tumor-specific features and microenvironmental patterns enriched in individuals who experience early relapse, the most high-risk FL patients. These features include stromal desmoplasia and changes to the follicular growth pattern present 20 months before first progression and first relapse.


Subject(s)
Lymphoma, Follicular , Humans , B-Lymphocytes , Lymphoma, Follicular/genetics , Multiomics , Prospective Studies , Recurrence , Tumor Microenvironment , Clinical Trials as Topic
2.
Blood ; 142(26): 2282-2295, 2023 12 28.
Article in English | MEDLINE | ID: mdl-37774374

ABSTRACT

ABSTRACT: The spatial anatomy of hematopoiesis in the bone marrow (BM) has been extensively studied in mice and other preclinical models, but technical challenges have precluded a commensurate exploration in humans. Institutional pathology archives contain thousands of paraffinized BM core biopsy tissue specimens, providing a rich resource for studying the intact human BM topography in a variety of physiologic states. Thus, we developed an end-to-end pipeline involving multiparameter whole tissue staining, in situ imaging at single-cell resolution, and artificial intelligence-based digital whole slide image analysis and then applied it to a cohort of disease-free samples to survey alterations in the hematopoietic topography associated with aging. Our data indicate heterogeneity in marrow adipose tissue (MAT) content within each age group and an inverse correlation between MAT content and proportions of early myeloid and erythroid precursors, irrespective of age. We identify consistent endosteal and perivascular positioning of hematopoietic stem and progenitor cells (HSPCs) with medullary localization of more differentiated elements and, importantly, uncover new evidence of aging-associated changes in cellular and vascular morphologies, microarchitectural alterations suggestive of foci with increased lymphocytes, and diminution of a potentially active megakaryocytic niche. Overall, our findings suggest that there is topographic remodeling of human hematopoiesis associated with aging. More generally, we demonstrate the potential to deeply unravel the spatial biology of normal and pathologic human BM states using intact archival tissue specimens.


Subject(s)
Artificial Intelligence , Hematopoietic Stem Cells , Humans , Mice , Animals , Hematopoietic Stem Cells/pathology , Bone Marrow/pathology , Hematopoiesis/physiology , Aging
3.
Biol Trace Elem Res ; 198(2): 567-574, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32144716

ABSTRACT

The objective of the present study was investigation of tissue trace element distribution in a streptozotocin model of DM1 in rats. DM1 was modeled in 2-month-old male Wistar rats (n = 30) using intraperitoneal injection of 45 mg/kg b.w. (STZ1) and 55 mg/kg b.w. streptozotocin (STZ2), whereas control animals were injected with physiological saline. The rats were subjected to oral glucose tolerance test (OGTT) and HbA1c level assessment at day 14. At day 30, blood serum, liver, kidney, and heart samples were collected for tissue trace element assessment using inductively coupled plasma mass spectrometry (ICP-MS). STZ-treated rats were characterized by lack of significant weight gain and elevated HbA1c and blood glucose levels. ICP-MS analysis demonstrated a dose-dependent accumulation of Cu, Mn, Mo, and Se levels in the liver. Correspondingly, the dose-dependent increase in renal Cu, Mn, V, and Zn levels was significant, whereas the observed trend for kidney V and Mo accumulation was nearly significant. The patterns of trace element content in the myocardium of STZ-exposed rats were quite different from those observed for liver and kidney. Only cardiac Zn content was characterized by a significant decrease. Serum Co, Cr, Cu, Se, V, and Mo levels were characterized by a significant decrease in response to STZ-induced diabetes. Generally, the obtained data demonstrate that diabetes is associated with altered copper, manganese, molybdenum, chromium, and vanadium handling. In turn, only altered Zn status may provide a link to diabetic cardiotoxicity. However, the particular mechanisms of both impaired metal handling in STZ diabetes and their potential anti-diabetic activity require further investigation.


Subject(s)
Diabetes Mellitus , Trace Elements , Animals , Copper , Male , Manganese/toxicity , Rats , Rats, Wistar , Streptozocin/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...