Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 14: 1200108, 2023.
Article in English | MEDLINE | ID: mdl-37608946

ABSTRACT

Ketoprofen, a bicyclic non-steroidal anti-inflammatory drug commonly used in human and veterinary medicine, has recently been cited as an environmental contaminant that raises concerns for ecological well-being. It poses a growing threat due to its racemic mixture, enantiomers, and transformation products, which have ecotoxicological effects on various organisms, including invertebrates, vertebrates, plants, and microorganisms. Furthermore, ketoprofen is bioaccumulated and biomagnified throughout the food chain, threatening the ecosystem function. Surprisingly, despite these concerns, ketoprofen is not currently considered a priority substance. While targeted eco-pharmacovigilance for ketoprofen has been proposed, data on ketoprofen as a pharmaceutical contaminant are limited and incomplete. This review aims to provide a comprehensive summary of the most recent findings (from 2017 to March 2023) regarding the global distribution of ketoprofen in the environment, its ecotoxicity towards aquatic animals and plants, and available removal methods. Special emphasis is placed on understanding how ketoprofen affects microorganisms that play a pivotal role in Earth's ecosystems. The review broadly covers various approaches to ketoprofen biodegradation, including whole-cell fungal and bacterial systems as well as enzyme biocatalysts. Additionally, it explores the potential of adsorption by algae and phytoremediation for removing ketoprofen. This review will be of interest to a wide range of readers, including ecologists, microbiologists, policymakers, and those concerned about pharmaceutical pollution.

2.
Microbiol Resour Announc ; 11(12): e0107022, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36383009

ABSTRACT

We report a draft genome sequence of Rhodococcus erythropolis IEGM 746 isolated from oil-polluted soil from an oil-extracting enterprise, Udmurt Republic, Russia. This strain was able to degrade ketoprofen, a commonly used nonsteroidal anti-inflammatory drug. Using the obtained sequence, putative genes encoding enzymes for ketoprofen degradation were revealed.

3.
Microorganisms ; 10(6)2022 May 26.
Article in English | MEDLINE | ID: mdl-35744619

ABSTRACT

Actinomycetes of the genus Rhodococcus (class Actinomycetia) are dominant dwellers of biotopes with anthropogenic load. They serve as a natural system of primary response to xenobiotics in open ecosystems, initiate defensive responses in the presence of pollutants, and are regarded as ideal agents capable of transforming and degrading pharmaceuticals. Here, the ability of selected Rhodococcus strains to co-metabolize nonsteroidal anti-inflammatory drugs (ibuprofen, meloxicam, and naproxen) and information on the protective mechanisms of rhodococci against toxic effects of pharmaceuticals, individually or in a mixture, have been demonstrated. For the first time, R. ruber IEGM 439 provided complete decomposition of 100 mg/L meloxicam after seven days. It was shown that versatile cellular modifications occurring at the early development stages of nonspecific reactions of Rhodococcus spp. in response to separate and combined effects of the tested pharmaceuticals included changes in electrokinetic characteristics and catalase activity; transition from unicellular to multicellular life forms accompanied by pronounced morphological abnormalities; changes in the average size of vegetative cells and surface area-to-volume ratio; and the formation of linked cell assemblages. The obtained data are considered as adaptation mechanisms in rhodococci, and consequently their increased resistance to separate and combined effects of ibuprofen, meloxicam, and naproxen.

SELECTION OF CITATIONS
SEARCH DETAIL
...