Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurochem ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38994820

ABSTRACT

Lysophosphatidic acid (LPA) is a bioactive phospholipid that participates in critical processes in neural development and adult brain function and is implicated in various pathophysiological conditions. Along with its six well-characterized receptors, atypical regulators of LPA signaling have also been suggested, including phospholipid phosphatase-related proteins (PLPPRs). PLPPRs have been mostly studied in the developing brain where they control LPA-dependent axon guidance, cortical network hyperexcitability, and glutamatergic neurotransmission. PLPPR4 and PLPPR3 represent two closely related proteins reported to localize predominantly in dendrites and axons, respectively, and differ in their developmental expression patterns. Herein, we have revised the expression patterns of PLPPRs in the cerebellum, dorsal and ventral hippocampus, prefrontal cortex (PFC), nucleus accumbens, and striatum during development and in the adult using quantitative PCR. Expression patterns of Plppr2,4 and 5 were consistent with previous studies, whereas Plppr3 and Plppr1 exhibited a unique expression profile in nucleus accumbens (NAc) and striatum in later developmental and adult stages, which we verified at the protein level for PLPPR3. To investigate neuron type-specific expression at the single cell level, we developed a bioinformatic tool to analyze recent single-cell RNA-sequencing data in the cerebral cortex and hippocampus of adult mice. Our analysis revealed a widespread but also selective adult neuron-type expression with higher expression levels of Plppr3, Plppr1, and Plppr5 in GABAergic and Plppr4 and Plppr2 in glutamatergic neurons. PLPPR4 has been identified as a post-synaptic modulator of LPA levels in glutamatergic synapses operating via an uptake mechanism, to control LPA-dependent cortical network hyperexcitability. Using subcellular fractionation experiments, we found that both PLPPR4 and PLPPR3 are co-expressed in adult synaptosomal membranes. Furthermore, flow cytometry experiments in HEK293 cells showed comparable LPA uptake by PLPPR4 and PLPPR3, whereas PLPRR3, but not PLPPR4, induced also uptake of monoacylglycerol, the dephosphorylation product of LPA. We propose that synaptic LPA may be subject to both pre-synaptic and post-synaptic mechanisms of regulation by PLPPRs in addition to LPARs in developing and adult synapses.

2.
Front Mol Neurosci ; 15: 984655, 2022.
Article in English | MEDLINE | ID: mdl-36187351

ABSTRACT

Neuronal plasma membrane proteins are essential for integrating cell extrinsic and cell intrinsic signals to orchestrate neuronal differentiation, growth and plasticity in the developing and adult nervous system. Here, we shed light on the family of plasma membrane proteins phospholipid phosphatase-related proteins (PLPPRs) (alternative name, PRGs; plasticity-related genes) that fine-tune neuronal growth and synaptic transmission in the central nervous system. Several studies uncovered essential functions of PLPPRs in filopodia formation, axon guidance and branching during nervous system development and regeneration, as well as in the control of dendritic spine number and excitability. Loss of PLPPR expression in knockout mice increases susceptibility to seizures, and results in defects in sensory information processing, development of psychiatric disorders, stress-related behaviors and abnormal social interaction. However, the exact function of PLPPRs in the context of neurological diseases is largely unclear. Although initially described as active lysophosphatidic acid (LPA) ecto-phosphatases that regulate the levels of this extracellular bioactive lipid, PLPPRs lack catalytic activity against LPA. Nevertheless, they emerge as atypical LPA modulators, by regulating LPA mediated signaling processes. In this review, we summarize the effects of this protein family on cellular morphology, generation and maintenance of cellular protrusions as well as highlight their known neuronal functions and phenotypes of KO mice. We discuss the molecular mechanisms of PLPPRs including the deployment of phospholipids, actin-cytoskeleton and small GTPase signaling pathways, with a focus on identifying gaps in our knowledge to stimulate interest in this understudied protein family.

3.
Schizophr Bull ; 48(5): 1136-1144, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35757972

ABSTRACT

BACKGROUND AND HYPOTHESIS: Schizophrenia is characterized by a complex interplay between genetic and environmental risk factors converging on prominent signaling pathways that orchestrate brain development. The Akt/GSK3ß/mTORC1 pathway has long been recognized as a point of convergence and etiological mechanism, but despite evidence suggesting its hypofunction, it is still not clear if this is already established during the first episode of psychosis (FEP). STUDY DESIGN: Here, we performed a systematic phosphorylation analysis of Akt, GSK3ß, and S6, a mTORC1 downstream target, in fresh peripheral blood mononuclear cells from drug-naive FEP patients and control subjects. STUDY RESULTS: Our results suggest 2 distinct signaling endophenotypes in FEP patients. GSK3ß hypofunction exhibits a promiscuous association with psychopathology, and it is normalized after treatment, whereas mTORC1 hypofunction represents a stable state. CONCLUSIONS: Our study provides novel insight on the peripheral hypofunction of the Akt/GSK3ß/mTORC1 pathway and highlights mTORC1 activity as a prominent integrator of altered peripheral immune and metabolic states in FEP patients.


Subject(s)
Glycogen Synthase Kinase 3 beta , Mechanistic Target of Rapamycin Complex 1 , Psychotic Disorders , Glycogen Synthase Kinase 3 beta/metabolism , Humans , Leukocytes, Mononuclear/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Proto-Oncogene Proteins c-akt/metabolism
4.
Cell Rep ; 29(7): 2028-2040.e8, 2019 11 12.
Article in English | MEDLINE | ID: mdl-31722215

ABSTRACT

In developing neurons, phosphoinositide 3-kinases (PI3Ks) control axon growth and branching by positively regulating PI3K/PI(3,4,5)P3, but how neurons are able to generate sufficient PI(3,4,5)P3 in the presence of high levels of the antagonizing phosphatase PTEN is difficult to reconcile. We find that normal axon morphogenesis involves homeostasis of elongation and branch growth controlled by accumulation of PI(3,4,5)P3 through PTEN inhibition. We identify a plasma membrane-localized protein-protein interaction of PTEN with plasticity-related gene 2 (PRG2). PRG2 stabilizes membrane PI(3,4,5)P3 by inhibiting PTEN and localizes in nanoclusters along axon membranes when neurons initiate their complex branching behavior. We demonstrate that PRG2 is both sufficient and necessary to account for the ability of neurons to generate axon filopodia and branches in dependence on PI3K/PI(3,4,5)P3 and PTEN. Our data indicate that PRG2 is part of a neuronal growth program that induces collateral branch growth in axons by conferring local inhibition of PTEN.


Subject(s)
Axons/metabolism , Membrane Proteins/metabolism , PTEN Phosphohydrolase/metabolism , Animals , COS Cells , Chlorocebus aethiops , Female , Humans , Male , Membrane Proteins/genetics , Mice , PTEN Phosphohydrolase/genetics , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol Phosphates/genetics , Phosphatidylinositol Phosphates/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...