Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
J Chem Phys ; 149(16): 163318, 2018 Oct 28.
Article in English | MEDLINE | ID: mdl-30384685

ABSTRACT

Sodium polyacrylate (NaPA) in dilute aqueous solution at an ionic strength of [NaNO3] = 0.01M establishes a rich phase behavior in the presence of low amounts of silver cations, which were introduced at a few millimoles or less by replacing the corresponding amount of Na+ cations. Beyond an extremely low level of Ag+ cations, anionic PA chains aggregate. By increasing the concentration of Ag+, the aggregates become denser and keep on growing without limit. Once a certain range of [Ag+] is reached, the instantaneously formed dense aggregates remain stable. Irradiation of the PA aggregate solutions with UV-light induces formation of silver nanoparticles (Ag-Nps). Based on a combination of UV-vis spectroscopy, light scattering, transmission electron microscopy, and small angle neutron scattering, the mechanism of this NaPA assisted formation of Ag-Nps is studied. One focus of the study is lying on the effect of the two different solution states of dense aggregates, corresponding to the unstable growing AgPA aggregates and to the stable AgPA aggregates and another focus is aiming at the characterisation of the morphology of the generated hybrid particles composed of Ag-Nps and hosting PA chains.

2.
Biomacromolecules ; 19(11): 4286-4298, 2018 11 12.
Article in English | MEDLINE | ID: mdl-30299090

ABSTRACT

Computationally designed peptides form desired antiparallel, tetrameric coiled-coil bundles that hierarchically assemble into a variety of well-controlled nanostructures depending on aqueous solution conditions. The bundles selectively self-assemble into different structures: nanotubes, platelets, or needle-like structures at solution pH values of 4.5, 7, and 10, respectively. The self-assembly produces hollow tubes or elongated needle-like structures at pH conditions associated with charged bundles (pH 4.5 or 10); at neutral pH, near the pI of the bundle, a plate-like self-assembled structure forms. Transmission electron microscopy and small-angle X-ray scattering show the nanotubes to be uniform with a tube diameter of ∼13 nm and lengths of up to several µm, yielding aspect ratios >1000. Combining the measured nanostructure geometry with the apparent charged states of the constituent amino acids, a tilted-bundle packing model is proposed for the formation of the homogeneous nanotubes. This work demonstrates the successful use of assembly pathway control for the construction of nanostructures with diverse, well-structured morphologies associated with the folding and self-association of a single type of molecule.


Subject(s)
Computational Biology , Nanostructures/chemistry , Nanotubes/chemistry , Peptide Fragments/chemistry , Water/chemistry , Amino Acid Sequence , Hydrogen-Ion Concentration , Molecular Dynamics Simulation , Sequence Homology
3.
Sci Adv ; 2(9): e1600307, 2016 09.
Article in English | MEDLINE | ID: mdl-27626071

ABSTRACT

Folded peptides present complex exterior surfaces specified by their amino acid sequences, and the control of these surfaces offers high-precision routes to self-assembling materials. The complexity of peptide structure and the subtlety of noncovalent interactions make the design of predetermined nanostructures difficult. Computational methods can facilitate this design and are used here to determine 29-residue peptides that form tetrahelical bundles that, in turn, serve as building blocks for lattice-forming materials. Four distinct assemblies were engineered. Peptide bundle exterior amino acids were designed in the context of three different interbundle lattices in addition to one design to produce bundles isolated in solution. Solution assembly produced three different types of lattice-forming materials that exhibited varying degrees of agreement with the chosen lattices used in the design of each sequence. Transmission electron microscopy revealed the nanostructure of the sheetlike nanomaterials. In contrast, the peptide sequence designed to form isolated, soluble, tetrameric bundles remained dispersed and did not form any higher-order assembled nanostructure. Small-angle neutron scattering confirmed the formation of soluble bundles with the designed size. In the lattice-forming nanostructures, the solution assembly process is robust with respect to variation of solution conditions (pH and temperature) and covalent modification of the computationally designed peptides. Solution conditions can be used to control micrometer-scale morphology of the assemblies. The findings illustrate that, with careful control of molecular structure and solution conditions, a single peptide motif can be versatile enough to yield a wide range of self-assembled lattice morphologies across many length scales (1 to 1000 nm).


Subject(s)
Computational Biology , Nanostructures/chemistry , Peptides/chemistry , Amino Acid Sequence/genetics , Microscopy, Electron, Transmission , Nanostructures/ultrastructure , Peptides/chemical synthesis , Peptides/genetics , Protein Folding , Protein Structure, Secondary
4.
J Colloid Interface Sci ; 472: 187-94, 2016 Jun 15.
Article in English | MEDLINE | ID: mdl-27038282

ABSTRACT

Solution fabricated high aspect ratio silver nanowires are of interest because of their usability in plasmonic devices or transparent electrodes. Recently, silver nanowires with diameters of 6.5 nm and lengths exceeding tens or hundreds of microns were grown by reduction of silver ions within the inner volume of nanotubular J-aggregates of an amphiphilic cyanine dye. Unlike in other soft template systems, the anisotropic growth of the silver wires is not caused by different screening of the diverse facets of silver crystals. Instead, the shape of the wires replicates the inner space of the tubes without destroying the template. This effect is demonstrated by ex-situ observation of the growth of the silver wires via transmission electron microscopy. The wire growth is initiated by exposure to blue light and starts with small, isolated crystallites within the tubular aggregates. The crystallites grow into pieces of wires that finally coalesce into continuous wires. The growth is mediated by material transport through the membrane-like wall of the dye aggregates. This wall permeability is further demonstrated by dissolution of the silver wires via oxidative etching by addition of sodium chloride. It is concluded that the cyanine double layer wall is permeable for ions such as silver, sodium, chlorine, and water molecules. This permeability permits control of the wire length through the concentration of chlorine when oxygen is removed from the solvent.

5.
Chem Commun (Camb) ; 51(60): 11980-2, 2015 Aug 04.
Article in English | MEDLINE | ID: mdl-26121136

ABSTRACT

Organic-inorganic nanohybrids have been synthesized by in situ coating supramolecular nanotubular J-aggregates with helically wound silica ribbons, reflecting the J-aggregates' superstructure. The J-aggregates retain their morphology and optical properties in the nanohybrids, and display improved stability against elevated temperatures, chemical ambient and photo-bleaching.


Subject(s)
Carbocyanines/chemistry , Coloring Agents/chemistry , Nanocomposites/chemistry , Nanoshells/chemistry , Silicon Dioxide/chemistry , Hot Temperature , Light , Nanocomposites/ultrastructure , Nanoshells/ultrastructure , Particle Size , Photobleaching , Surface Properties
6.
ACS Nano ; 9(2): 1552-60, 2015 Feb 24.
Article in English | MEDLINE | ID: mdl-25555126

ABSTRACT

Resonant coupling between distinct excitons in organic supramolecular assemblies and inorganic semiconductors is supposed to offer an approach to optoelectronic devices. Here, we report on colloidal nanohybrids consisting of self-assembled tubular J-aggregates decorated with semiconductor quantum dots (QDs) via electrostatic self-assembly. The role of QDs in the energy transfer process can be switched from a donor to an acceptor by tuning its size and thereby the excitonic transition energy while keeping the chemistry unaltered. QDs are located within a close distance (<4 nm) to the J-aggregate surface, without harming the tubular structures and optical properties of J-aggregates. The close proximity of J-aggregates and QDs allows the strong excitation energy transfer coupling, which is around 92% in the case of energy transfer from the QD donor to the J-aggregate acceptor and approximately 20% in the reverse case. This system provides a model of an organic-inorganic light-harvesting complex using methods of self-assembly in aqueous solution, and it highlights a route toward hierarchical synthesis of structurally well-defined supramolecular objects with advanced functionality.


Subject(s)
Fluorescence Resonance Energy Transfer , Quantum Dots/chemistry , Models, Molecular , Molecular Conformation , Semiconductors , Surface Properties
7.
Langmuir ; 30(21): 6038-46, 2014 Jun 03.
Article in English | MEDLINE | ID: mdl-24814886

ABSTRACT

In this work, we report the formation and growth mechanisms of gold nanoparticles (AuNPs) in eco-friendly deep eutectic solvents (DES; choline chloride and urea). AuNPs are synthesized on the DES surface via a low-energy sputter deposition method. Detailed small angle X-ray scattering (SAXS), UV-Vis, and cryogenic transmission electron microscopy (cryo-TEM) investigations show the formation of AuNPs of 5 nm diameter. Data analysis reveals that for a prolonged gold-sputtering time there is no change in the size of the particles. Only the concentration of AuNPs increases linearly in time. More surprisingly, the self-assembly of AuNPs into a first and second shell ordered system is observed directly by in situ SAXS for prolonged gold-sputtering times. The self-assembly mechanism is explained by the templating nature of DES combined with the equilibrium between specific physical interaction forces between the AuNPs. A disulfide-based stabilizer, bis((2-mercaptoethyl)trimethylammonium) disulfide dichloride, was applied to suppress the self-assembly. Moreover, the stabilizer even reverses the self-assembled or agglomerated AuNPs back to stable 5 nm individual particles as directly evidenced by UV-Vis. The template behavior of DES is compared to that of nontemplating solvent castor oil. Our results will also pave the way to understand and control the self-assembly of metallic and bimetallic nanoparticles.

8.
Nanoscale ; 6(12): 6945-52, 2014 Jun 21.
Article in English | MEDLINE | ID: mdl-24838980

ABSTRACT

The interactions between nanoparticles and vesicles are of significant interest both from a fundamental as well as from a practical point of view, as vesicles can serve as a model system for cell membranes. Accordingly the effect of nanoparticles that bind to the vesicle bilayer is very important with respect to understanding their biological impact and also may shed some light on the mechanisms behind the effect of nanotoxicity. In this study we have investigated the influence of small adsorbed silica nanoparticles (SiNPs) on the structure of zwitterionic DOPC vesicles. By a combination of SANS, cryo-TEM, and DLS, we observed that the SiNPs are bound to the outer vesicle surface without significantly affecting the vesicle structure. Most interestingly, by means of neutron spin-echo (NSE) local bilayer fluctuations were studied and one finds a small but marked decrease of the membrane rigidity upon binding of the nanoparticles. This surprising finding may be a relevant aspect for the further understanding of the effects that nanoparticles have on phospholipid bilayers.


Subject(s)
Lipid Bilayers/chemistry , Membrane Fluidity , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Phosphatidylcholines/chemistry , Silicon Dioxide/chemistry , Adhesiveness , Adsorption , Hardness , Materials Testing , Neutron Diffraction
9.
J Am Chem Soc ; 136(11): 4245-56, 2014 Mar 19.
Article in English | MEDLINE | ID: mdl-24524296

ABSTRACT

We investigated the correlation between the polymer backbone structural regularity and the charge transport properties of poly{[N,N'-bis(2-octyldodecyl)-1,4,5,8-naphthalenediimide-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)} [P(NDI2OD-T2)], a widely studied semiconducting polymer exhibiting high electron mobility and an unconventional micromorphology. To understand the influence of the chemical structure and crystal packing of conventional regioregular P(NDI2OD-T2) [RR-P(NDI2OD-T2)] on the charge transport, the corresponding regioirregular polymer RI-P(NDI2OD-T2) was synthesized. By combining optical, X-ray, and transmission electron microscopy data, we quantitatively characterized the aggregation, crystallization, and backbone orientation of all of the polymer films, which were then correlated to the electron mobilities in electron-only diodes. By carefully selecting the preparation conditions, we were able to obtain RR-P(NDI2OD-T2) films with similar crystalline structure along the three crystallographic axes but with different orientations of the polymer chains with respect to the substrate surface. RI-P(NDI2OD-T2), though exhibiting a rather similar LUMO structure and energy compared with the regioregular counterpart, displayed a very different packing structure characterized by the formation of ordered stacks along the lamellar direction without detectible π-stacking. Vertical electron mobilities were extracted from the space-charge-limited currents in unipolar devices. We demonstrate the anisotropy of the charge transport along the different crystallographic directions and how the mobility depends on π-stacking but is insensitive to the degree or coherence of lamellar stacking. The comparison between the regioregular and regioirregular polymers also shows how the use of large planar functional groups leads to improved charge transport, with mobilities that are less affected by chemical and structural disorder with respect to classic semicrystalline polymers such as poly(3-hexylthiophene).

10.
Angew Chem Int Ed Engl ; 53(4): 1062-6, 2014 Jan 20.
Article in English | MEDLINE | ID: mdl-24311464

ABSTRACT

The superior physical properties of carbon nanotubes (CNTs) have led to their broad application. Intrinsically, CNTs tend to agglomerate from hydrophobic interactions, which is highly undesirable for solution processing and device fabrication. Commonly, a stabilizer consisting of organic surfactants or polymers is used to disperse CNTs. Recently, we synthesized nitrogen-doped carbon hollow nanospheres (25-90 nm), termed carbon "nanobubbles". They bear superior dispersability in water and distinctive graphitic order. Herein, we describe the nanobubble-assisted dispersion of CNTs in aqueous solution upon sonication. This process relies on the π-π interaction between the two aromatic carbon nanostructures, which can process their carbon mixture in water into conductive filter membranes, ink, and discs. This stabilization can be extended to other aromatic carbons. In addition, the π-π interaction may create a new type of carbon p-n junction that can be used to improve charge separation.


Subject(s)
Carbon/chemistry , Nanostructures/chemistry , Colloids/chemistry , Nitrogen/chemistry , Particle Size , Surface Properties
11.
ACS Macro Lett ; 3(6): 534-539, 2014 Jun 17.
Article in English | MEDLINE | ID: mdl-35590719

ABSTRACT

Protection-deprotection of carbohydrate is often required in the preparation of glycopolymers, which causes an obvious polarity change of the polymers, but it has been neglected in the studies of self-assembly. In this paper, a new strategy for self-assembly of sugar-containing block copolymers is suggested based on the protection-deprotection chemistry. We found that deacetylation of a series of block copolymers of PS-b-PManAc (PS, polystyrene block; PManAc, "sugar block" with acetylated α-mannopyranoside side groups) in THF resulted in glyco-inside structures of the deprotected copolymer PS-b-PMan, i.e., vesicles with a sugar wall and micelles with a sugar core. Besides, vesicle-to-micelle transition of the assemblies with decreasing the relative length of the sugar block was observed. These unique glyco-inside assemblies show interesting functions, such as generating homogeneous Au nanoparticles within the layer of the glyco-block from AuCl4- without any additional reducing reagents or energy input. Control experiments prove that the polar layer of glyco-polymer inside the vesicle provides an essential reduction environment.

12.
J Am Chem Soc ; 136(1): 12-5, 2014 Jan 08.
Article in English | MEDLINE | ID: mdl-24295443

ABSTRACT

A poly(ionic liquid) with a rather low glass transition temperature of -57°C was synthesized via free radical polymerization of an acrylate-type ionic liquid monomer. It exhibits fluidic behavior in a wide temperature range from room temperature to the threshold of the thermal decomposition. We demonstrate that it could act as a unique type of macromolecular solvent to dissolve various compounds and polymers and separate substances. In addition, this polyelectrolyte could serve successfully as reaction medium for catalysis and colloid particle synthesis. The synergy in the solvation and stabilization properties is a striking character of this polymer to downsize the in situ generated particles.

13.
Phys Chem Chem Phys ; 15(37): 15623-31, 2013 Oct 07.
Article in English | MEDLINE | ID: mdl-23942792

ABSTRACT

The interaction of spherical gold nanoparticles (Au-NPs) with microgels composed of chemically cross-linked poly-(N-isopropylacrylamide) is reported. Simple mixing of the two components leads to adsorption of the gold particles onto the microgels. Different loading densities can be achieved by varying the ratio of gold particles to microgel particles. The adsorption of gold nanoparticles is analysed by TEM, UV-Vis absorption spectroscopy and SAXS. The influence of the microgel mesh size on the adsorption of gold nanoparticles is investigated by using microgels with three different cross-linker densities. The results suggest a strong relationship between the nanoparticle penetration depth and the cross-linker density. This, in turn, directly influences the optical properties of the colloids due to plasmon resonance coupling. In addition, information about the mesh size distribution of the microgels is obtained. For the first time the change in optical properties by varying cross-linker density and temperature is directly related to the formation of dimers of gold particles, proven by SAXS.

14.
Nano Lett ; 13(2): 824-8, 2013 Feb 13.
Article in English | MEDLINE | ID: mdl-23360082

ABSTRACT

The electronic structure of individual hybrid particles was studied by nanoscale near-edge X-ray absorption spectromicroscopy. The colloidal particles consist of a solid polystyrene core and a cross-linked poly-N-(isopropylacrylamide) shell with embedded crystalline titanium dioxide (TiO(2)) nanoparticles (d = 6 ± 3 nm). The TiO(2) particles are generated in the carrier network by a sol-gel process at room temperature. The hybrid particles were imaged with photon energy steps of 0.1 eV in their hydrated environment with a cryo transmission X-ray microscope (TXM) at the Ti L(2,3)-edge. By analyzing the image stacks, the obtained near-edge X-ray absorption fine structure (NEXAFS) spectra of our individual hybrid particles show clearly that our synthesis generates TiO(2) in the anastase phase. Additionally, our spectromicroscopy method permits the determination of the density distribution of TiO(2) in single carrier particles. Therefore, NEXAFS spectroscopy combined with TXM presents a unique method to get in-depth insight into the electronic structure of hybrid materials.


Subject(s)
Colloids/chemistry , Electrons , Models, Molecular , Molecular Structure , Particle Size , Surface Properties , X-Ray Absorption Spectroscopy , X-Rays
15.
Macromol Rapid Commun ; 33(12): 1042-8, 2012 Jun 27.
Article in English | MEDLINE | ID: mdl-22495785

ABSTRACT

Monodisperse thermosensitive dumbbell-shaped core-shell microgels are fabricated, which consist of a polystyrene core with a cross-linked poly (N-isopropylacrylamide) shell. The morphology of the microgels was investigated through cryogenic transmission electron microscopy and depolarized dynamic light scattering. The effective volume fraction and aspect ratio of the system could be adjusted through the swelling of the thermosensitive shell. We observe a phase transition of the microgels to an ordered, crystal-like state, which is apparent through Bragg-reflections in the visible range. These observations are further supported by rheological measurements where the shear-melting of the crystal phase is clearly detected.


Subject(s)
Acrylic Resins/chemistry , Polystyrenes/chemistry , Gels , Microscopy, Electron, Transmission , Phase Transition , Temperature
16.
Phys Chem Chem Phys ; 14(18): 6487-95, 2012 May 14.
Article in English | MEDLINE | ID: mdl-22456829

ABSTRACT

We present a quantitative study of the catalytic activity of well-defined faceted gold-palladium nanoalloys which are immobilized on cationic spherical polyelectrolyte brushes. The spherical polyelectrolyte brush particles used as carriers for the nanoalloys consist of a solid polystyrene core onto which cationic polyelectrolyte chains of 2-aminoethyl methacrylate are attached. Au/Pd nanoalloy particles with sizes in the range from 1 to 3 nm have been generated which are homogeneously distributed on the surface of the spherical polyelectrolyte brushes. The reduction of 4-nitrophenol has been chosen as a well-controlled model reaction allowing us to determine the catalytic activity of the nanoalloys as a function of the Au/Pd composition. The adsorption behavior was studied by Langmuir-Hinshelwood kinetics. We find a pronounced maximum of the catalytic activity at 75 molar % Au. A comparison of gold, platinum, palladium and gold-palladium alloy nanoparticles is made in terms of Langmuir-Hinshelwood kinetics. Density functional calculations for Au/Pd clusters with up to 38 atoms show that the density of states at the Fermi level increases with increasing Pd content, and that the highest occupied orbitals are associated with Pd atoms. The calculations confirm that small changes in the atomic arrangement can lead to pronounced changes in the particles' electronic properties, indicating that the known importance of surface effects is further enhanced in nanoalloys.

17.
ACS Nano ; 4(12): 7078-86, 2010 Dec 28.
Article in English | MEDLINE | ID: mdl-21082786

ABSTRACT

Here, we demonstrate that bimetallic Au-Pt nanorods (NRs) can be grown in situ into thermosensitive core-shell microgel particles by a novel two-step approach. In the first step, Au NRs with an average width of 6.6 ± 0.3 nm and length of 34.5 ± 5.2 nm (aspect ratio 5.2 ± 0.6) were homogeneously embedded into the shell of PNIPA networks. The volume transition of the microgel network leads to a strong red shift of the longitudinal plasmon band of the Au NRs. In the second step, platinum was preferentially deposited onto the tips of Au NRs to form dumbbell-shaped bimetallic nanoparticles. The novel synthesis forms bimetallic Au-Pt NRs immobilized in microgels without impeding their colloidal stability. Quantitative analysis of the catalytic activity for the reduction of 4-nitrophenol indicates that bimetallic Au-Pt NRs show highly enhanced catalytic activity, which is due to the synergistic effect of bimetallic nanoparticles. The catalytic activity of immobilized Au-Pt NRs can be modulated by the volume transition of thermosensitive microgels. This demonstrates that core-shell microgels are capable of serving as "smart nanoreactors" for the catalytic active bimetallic nanoparticles with controlled morphology and high colloidal stability.


Subject(s)
Gold/chemistry , Microtechnology/methods , Nanotubes/chemistry , Platinum/chemistry , Temperature , Acrylamides/chemistry , Acrylic Resins , Catalysis , Gels , Kinetics , Microscopy, Electron, Transmission , Polymers/chemistry , Polystyrenes/chemistry , Spectrophotometry, Ultraviolet
SELECTION OF CITATIONS
SEARCH DETAIL
...