Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 20(11): 7428-7437, 2018 Mar 14.
Article in English | MEDLINE | ID: mdl-29323378

ABSTRACT

In situ monitoring of the formation of emissive complexes is essential to enable the development of rational synthesis protocols, to provide accurate control over the generation of structure-related properties (such as luminescence) and to facilitate the development of new compounds. In situ luminescence analysis of coordination sensors (ILACS) utilizes the sensitivity of the spectroscopic properties of lanthanide ions to their coordination environment to detect structural changes during crystallization processes. Here, ILACS was utilized to monitor the formation of [Eu(bipy)2(NO3)3] (bipy = 2,2'-bipyridine) during co-precipitation synthesis. Validity of the ILACS results was ensured by concomitant utilization of in situ monitoring of other reaction parameters, including in situ measurements of pH value, ionic conductivity, and infrared spectra, as well as ex situ and synchrotron-based in situ X-ray diffraction analyses. Gradual desolvation of the Eu3+ ions and attachment of ligands were detected by an exponential increase of the intensity of the 5D0 → 7FJ (J = 0-4) transitions in the emission spectrum. Additionally, the in situ emission spectra show a decrease in the crystallization rate and an increase in the induction time in response to a reduction in the concentration of the starting solutions from 12 mM until crystallization ceased at starting reactant concentrations <6 mM. An increase to a three-fold higher concentration leads to the formation of a reaction intermediate, and its stability was determined to be highly concentration-dependent. The in situ luminescence measurements also demonstrated the existence of a ligand exchange process within the [Eu(bipy)2(NO3)3] complex upon addition of a phen (phen = 1,10'-phenanthroline) solution and the generation of a new phen-containing emissive complex. In attempting to solve the structure of this new phen-containing complex, a different, but nevertheless previously unsynthesized complex, [Eu(phen)2(NO3)3]bipy, was obtained, which shows characteristic Eu3+ luminescence in the red spectral range.

2.
Dalton Trans ; 46(5): 1618-1623, 2017 Jan 31.
Article in English | MEDLINE | ID: mdl-28098290

ABSTRACT

The antimonato-polyoxovanadate {NiII(en)3}3[VSbO42(H2O)]·ca.15H2O was utilized as a synthon for the solvothermal in situ generation of the new compound {NiII(phen)3}2[{NiII(en)2}VSbO42(H2O)]·19H2O, a rearrangement induced by ligand metathesis. While in the precursor structure cations and anions are isolated, the solid-state structure of the product is characterized by 1D chains consisting of alternating [V15Sb6O42(H2O)]6- cluster shells and [Ni(en)2]2+ units covalently linked to neighboring clusters via terminal oxygen atoms. Water clusters composed of sixteen hydrogen-bonded H2O molecules are located in void spaces of the structure. The magnetic properties indicate weak antiferromagnetic interactions of the bridging Ni2+ center and adjacent polyoxovanadate anions, as well as small magnetic anisotropy of the individual Ni2+ centers.

SELECTION OF CITATIONS
SEARCH DETAIL
...