Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Mol Ther Methods Clin Dev ; 14: 37-46, 2019 Sep 13.
Article in English | MEDLINE | ID: mdl-31276010

ABSTRACT

Exudative age-related macular degeneration (AMD), characterized by choroidal neovascularization (CNV), is the leading cause of irreversible blindness in developed countries. Anti-vascular endothelial growth factor (VEGF) drugs are the standard treatment for AMD, but they have limitations. Cell therapy is a promising approach for ocular diseases, and it is being developed in the clinic for the treatment of retinal degeneration, including AMD. We previously showed that subretinal injection of human umbilical tissue-derived cells (hUTCs) in a rodent model of retinal degeneration preserved photoreceptors and visual function through rescue of retinal pigment epithelial (RPE) cell phagocytosis. Here we investigated the effect of hUTCs on a rat model of laser-induced CNV and on a human RPE cell line, ARPE-19, for VEGF production. We demonstrate that subretinal injection of hUTCs significantly inhibited CNV and lowered choroidal VEGF in vivo. VEGF release from ARPE-19 decreased when co-cultured with hUTCs. Soluble VEGF receptor 1 (sVEGFR1) is identified as the only factor in hUTC conditioned medium (CM) that binds to VEGF. The level of exogenous recombinant VEGF in hUTC CM was dramatically reduced and could be recovered with sVEGFR1-neutralizing antibody. This suggests that hUTC inhibits angiogenesis through the secretion of sVEGFR1 and could serve as a novel treatment for angiogenic ocular diseases, including AMD.

2.
BMC Biotechnol ; 15: 95, 2015 Oct 16.
Article in English | MEDLINE | ID: mdl-26475607

ABSTRACT

BACKGROUND: Amidation of the carboxyl terminal of many peptides is essential for full biological potency, often increasing receptor binding and stability. The single enzyme responsible for this reaction is peptidylglycine α-amidating monooxygenase (PAM: EC 1.14.17.3), a copper- and ascorbate-dependent Type I membrane protein. METHODS: To make large amounts of high molecular weight amidated product, Chinese hamster ovary (CHO) cells were engineered to express exogenous PAM. To vary access of the enzyme to its substrate, exogenous PAM was targeted to the endoplasmic reticulum, trans-Golgi network, endosomes and lysosomes or to the lumen of the secretory pathway. RESULTS: PAM was equally active when targeted to each intracellular location and assayed in homogenates. Immunocytochemical analyses of CHO cells and a pituitary cell line demonstrated that targeting of exogenous PAM was partially successful. PAM substrates generated by expressing peptidylglycine substrates (glucagon-like peptide 1-Gly, peptide YY-Gly and neuromedin U-Gly) fused to the C-terminus of immunoglobulin Fc in CHO cell lines producing targeted PAM. The extent of amidation of the Fc-peptides was determined by mass spectrometry and amidation-specific enzyme immunoassays. Amidation was inhibited by copper chelation, but was not enhanced by the addition of additional copper or ascorbate. CONCLUSIONS: Peptide amidation was increased over endogenous levels by exogenous PAM, and targeting PAM to the endoplasmic reticulum or trans-Golgi network increased peptide amidation compared to endogenous CHO PAM.


Subject(s)
Immunoglobulin Fc Fragments/metabolism , Metabolic Engineering/methods , Peptides/metabolism , Recombinant Fusion Proteins/metabolism , Amides/chemistry , Amides/metabolism , Animals , CHO Cells , Cricetinae , Cricetulus , HEK293 Cells , Humans , Immunoglobulin Fc Fragments/analysis , Immunoglobulin Fc Fragments/chemistry , Mass Spectrometry , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Multienzyme Complexes/genetics , Multienzyme Complexes/metabolism , Peptides/analysis , Peptides/chemistry , Recombinant Fusion Proteins/analysis , Recombinant Fusion Proteins/chemistry
3.
BMC Biotechnol ; 15: 61, 2015 Jun 27.
Article in English | MEDLINE | ID: mdl-26116580

ABSTRACT

BACKGROUND: The therapeutic use of α-amidated peptides (e.g. calcitonin, glucagon-like peptide) has increased dramatically, but there are major impediments to wider use of such peptides. Larger peptides are expensive to synthesize, and short plasma half-lives frequently limit the clinical circumstances in which the peptides would be useful. Both problems are potentially solved by producing peptides as fusions with the Fc region of human immunoglobulin. METHODS: Glucagon-like peptide 1 (GLP1), peptide YY (PYY) and neuromedin U (NMU) were expressed and purified from stable CHO lines; since the α-amide group is essential for full biological potency of many peptides, Fc-fusion peptides were expressed in CHO lines stably expressing the α-amidating enzyme, peptidylglycine α-amidating monooxygenase (PAM: EC 1.14.17.3). Purified fusion proteins were analyzed intact and after HRV3C rhinovirus protease cleavage, at a site in the linker separating the Fc region from the peptide, by mass spectrometry and amide-specific immunoassays. RESULTS: The Fc fusions were expressed at 1-2.5 µg/mg cell protein and secreted at 5-20% of cell content per hour, in a peptide-specific manner. CHO cells express measurable endogenous PAM activity, amidating 25% of Fc-PYY and almost 90% of Fc-GLP1. Expression of exogenous PAM increased the level of peptide amidation to 50% of Fc-PYY and 95 % of Fc-NMU. The Fc-GLP1 fusions were 10,000-fold less active than synthetic GLP1 in a cell-receptor cyclic AMP-based assay, as expected since the amino terminal of GLP1 is essential for full biological activity. The Fc-PYY fusions were 100-fold less active than PYY-NH2 but 10-fold more active than non-amidated PYY-Gly. CONCLUSIONS: This type of approach can be used for the production of stabilized α-amidated peptides aimed at clinical trials.


Subject(s)
Amides/metabolism , Immunoglobulin Fc Fragments/chemistry , Immunoglobulin Fc Fragments/metabolism , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Amides/chemistry , Animals , CHO Cells , Cricetinae , Cricetulus , Glucagon-Like Peptide 1 , Humans , Immunoglobulin Fc Fragments/genetics , Neuropeptides , Peptide YY , Protein Stability , Recombinant Fusion Proteins/genetics
4.
Article in English | MEDLINE | ID: mdl-22771237

ABSTRACT

This work details the transformation of a conventional HPLC system to a low back pressure liquid chromatography set-up for automated serum/plasma depletion and fractionation. A Dionex U3000 HPLC was converted to low back pressure operation (125 psi max) by replacing all narrow-bore lines to larger inner-diameter tubing. The system was configured to use two immunoaffinity columns, first for depletion of the top 14 most abundant proteins (Seppro IgY14), then for the next 200-300 proteins (Seppro SuperMix). The autosampler was dual-purposed for both injection and fraction collection. Both the flow-through and SuperMix bound proteins were collected in an automated fashion. Three samples could be depleted consecutively before the system required user intervention, and up to nine samples could be depleted within a 24 h period. This study documents the validation of the instrument performance with a 90-patient sample set, demonstrating overall CVs for 86 of the 90 samples to be within the 95% confidence intervals. Additionally, there was excellent reproducibility within the same patient (biological replicates) across days.


Subject(s)
Blood Proteins/isolation & purification , Chromatography, Affinity/methods , Chromatography, High Pressure Liquid/methods , Area Under Curve , Chromatography, Affinity/instrumentation , Chromatography, High Pressure Liquid/instrumentation , Humans , Reproducibility of Results
5.
Biopolymers ; 94(3): 350-9, 2010.
Article in English | MEDLINE | ID: mdl-20091676

ABSTRACT

The protein human CC chemokine ligand 2 (CCL2, also known as monocyte chemoattractant protein 1 or MCP-1) has been synthesized using a combination of solid phase peptide synthesis (SPPS) and native chemical ligation (NCL). The thioester-peptide segment was synthesized using the sulfonamide safety-catch linker and 9-fluorenylmethoxycarbonyl (Fmoc) SPPS, and pseudoproline dipeptides were used to facilitate the synthesis of both CCL2 fragments. After assembly of the full-length peptide chain by NCL, a glutathione redox buffer was used to fold and oxidize the CCL2 protein. Synthetic human CCL2 binds to and activates the CCR2 receptor on THP-1 cells, as expected. CCL2 was crystallized and the structure was determined by X-ray diffraction at 1.9-A resolution. The structure of the synthetic protein is very similar to that of a previously reported structure of recombinant human CCL2, although the crystal form is different. The functional CCL2 dimer for the crystal structure reported here is formed around a crystallographic twofold axis. The dimer interface involves residues Val9-Thr10-Cys11, which form an intersubunit antiparallel beta-sheet. Comparison of the CCL2 dimers in different crystal forms indicates a significant flexibility of the quaternary structure. To our knowledge, this is one of the first crystal structures of a protein prepared using the sulfonamide safety-catch linker and NCL.


Subject(s)
Chemokine CCL2/chemistry , Chemokine CCL2/chemical synthesis , Protein Structure, Quaternary , Protein Structure, Tertiary , Amino Acid Sequence , Chemokine CCL2/genetics , Crystallography, X-Ray , Humans , Models, Molecular , Molecular Sequence Data , Oxidation-Reduction , Protein Folding , Protein Multimerization , Radioligand Assay
7.
RNA ; 13(3): 396-403, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17255199

ABSTRACT

Post-transcriptional modifications of RNA are nearly ubiquitous in the principal RNAs involved in translation. However, in the case of rRNA the functional roles of modification are far less established than for tRNA, and are subject to less knowledge in terms of specific nucleoside identities and their sequence locations. Post-transcriptional modifications have been studied in the SSU rRNA from Thermotoga maritima (optimal growth 80 degrees C), one of the most deeply branched organisms in the Eubacterial phylogenetic tree. A total of 10 different modified nucleosides were found, the greatest number reported for bacterial SSU rRNA, occupying a net of approximately 14 sequence sites, compared with a similar number of sites recently reported for Thermus thermophilus and 11 for Escherichia coli. The relatively large number of modifications in Thermotoga offers modest support for the notion that thermophile rRNAs are more extensively modified than those from mesophiles. Seven of the Thermotoga modified sites are identical (location and identity) to those in E. coli. An unusual derivative of cytidine was found, designated N-330 (Mr 330.117), and was sequenced to position 1404 in the decoding region of the rRNA. It was unexpectedly found to be identical to an earlier reported nucleoside of unknown structure at the same location in the SSU RNA of the archaeal mesophile Haloferax volcanii.


Subject(s)
Cytidine/metabolism , RNA Processing, Post-Transcriptional , RNA, Ribosomal, 16S/metabolism , Thermotoga maritima/genetics , Cytidine/analysis , Nucleosides/analysis , RNA, Ribosomal, 16S/chemistry , Thermotoga maritima/metabolism
8.
Biochemistry ; 45(15): 4888-99, 2006 Apr 18.
Article in English | MEDLINE | ID: mdl-16605256

ABSTRACT

Posttranscriptional modification in RNA generally serves to fine-tune and regulate RNA structure and, in many cases, is relatively conserved and phylogenetically distinct. We report the complete modification map for SSU rRNA from Thermus thermophilus, determined primarily by HPLC/electrospray ionization MS-based methods. Thermus modification levels are significantly lower, and structures at the nucleoside level are very different from those of the archaeal thermophile Sulfolobus solfataricus growing in the same temperature range [Noon, K. R., et al. (1998) J. Bacteriol. 180, 2883-2888]. The Thermus modification map is unexpectedly similar to that of Escherichia coli (11 modified sites), with which it shares identity in 8 of the 14 modifications. Unlike the heavily methylated Sulfolobus SSU RNA, Thermus contains a single ribose-methylated residue, N(4),2'-O-dimethylcytidine-1402, suggesting that O-2'-ribose methylation in this bacterial thermophile plays a reduced role in thermostabilization compared with the thermophilic archaea. Adjacent pseudouridine residues were found in the single-stranded 3' tail of Thermus 16S rRNA at residues 1540 and 1541 (E. coli numbering) in the anti-Shine-Dalgarno mRNA binding sequence. The present results provide an example of the potential of LC/MS for extensive modification mapping in large RNAs.


Subject(s)
Phylogeny , Prokaryotic Cells/metabolism , RNA Processing, Post-Transcriptional , RNA, Ribosomal, 16S/metabolism , Thermus thermophilus/genetics , Base Sequence , Chromatography, Liquid , Models, Biological , Molecular Sequence Data , RNA Processing, Post-Transcriptional/genetics , RNA, Ribosomal, 16S/genetics , Ribonucleases/genetics , Ribonucleases/metabolism , Spectrometry, Mass, Electrospray Ionization , Thermus thermophilus/metabolism
9.
Anal Chem ; 77(15): 4687-97, 2005 Aug 01.
Article in English | MEDLINE | ID: mdl-16053277

ABSTRACT

Pseudouridine, an isomer of uridine, is probably the most common of many posttranscriptional RNA modifications found in nature. Although mass spectrometry has become widely used in the characterization of modified nucleic acids, its application to the recognition and sequence placement of pseudouridine has not been straightforward, particularly in the case of complex mixtures such as those resulting from selective enzymatic hydrolysis of RNA into oligonucleotides. We report results of a study of the characteristic dissociation reactions of pseudouridine-containing oligonucleotides following ionization by electrospray and use of those pathways in an LC/MS-based method applicable to direct analysis of RNase digests of RNA. As a consequence of the C-C (rather than C-N) glycosidic bond of pseudouridine, the otherwise common dissociation paths involving base loss do not occur, resulting in characteristic formation of a set of low-mass negative ions containing the intact glycosidic bond (m/z 225, 207, 189, 165, 164, 139), which permit recognition of pseudouridine-containing oligonucleotides. Those components can subsequently be subjected to sequence analysis by MS/MS, in which enhancement of selective sequence-determining ions (a-, w-, y-types), and absence of a - base ions, are observed at the site of pseudouridylation. Also, selected reaction pathways can be monitored in the LC/MS/MS analysis that are indicative of pseudouridine at the 5' terminus (m/z 225 --> 165), internal positions (m/z 207 --> 164), and in the RNase T1-derived product Psi pGp (m/z 668 --> 207) arising from the RNA sequence ...G Psi G... These procedures can be effectively integrated into an existing suite of LC/ESI-MS-based methods designed for the analysis of posttranscriptionally modified sites in RNA.


Subject(s)
Mass Spectrometry/methods , Oligonucleotides/analysis , Oligonucleotides/chemistry , Pseudouridine/analysis , Pseudouridine/chemistry , RNA/analysis , RNA/chemistry , Base Sequence , Escherichia coli/chemistry , Ions/chemistry , Isomerism , Models, Genetic , Phosphorylation , Ribose/chemistry , Water/chemistry
10.
EMBO J ; 24(10): 1842-51, 2005 May 18.
Article in English | MEDLINE | ID: mdl-15861125

ABSTRACT

The mutation sufY204 mediates suppression of a +1 frameshift mutation in the histidine operon of Salmonella enterica serovar Typhimurium and synthesis of two novel modified nucleosides in tRNA. The sufY204 mutation, which results in an amino-acid substitution in a protein, is, surprisingly, dominant over its wild-type allele and thus it is a "gain of function" mutation. One of the new nucleosides is 5-methylaminomethyl-2-thiouridine (mnm(5)s(2)U34) modified by addition of a C(10)H(17) side chain of unknown structure. Increased amounts of both nucleosides in tRNA are correlated to gene dosage of the sufY204 allele, to an increased efficiency of frameshift suppression, and to a decreased amount of the wobble nucleoside mnm(5)s(2)U34 in tRNA. Purified tRNA(Gln)(cmnm(5)s(2)UUG) in the mutant strain contains a modified nucleoside similar to the novel nucleosides and the level of aminoacylation of tRNA(Gln)(cmnm(5)s(2)UUG) was reduced to 26% compared to that found in the wild type (86%). The results are discussed in relation to the mechanism of reading frame maintenance and the evolution of modified nucleosides in tRNA.


Subject(s)
Frameshift Mutation , Genes, Suppressor , Nucleosides/biosynthesis , Operon , Amino Acid Substitution , Lac Operon/genetics , Nucleosides/chemistry , RNA, Transfer/chemistry , RNA, Transfer/genetics , Salmonella typhimurium/genetics , Salmonella typhimurium/metabolism , Selenic Acid , Selenium Compounds/metabolism , Spectrometry, Mass, Electrospray Ionization , Transfer RNA Aminoacylation/genetics , Transfer RNA Aminoacylation/physiology
11.
RNA ; 11(2): 210-9, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15659360

ABSTRACT

The number and position of the pseudouridines of Haloarcula marismortui and Deinococcus radiodurans large subunit RNA have been determined by a combination of total nucleoside analysis by HPLC-mass spectrometry and pseudouridine sequencing by the reverse transcriptase method and by LC/MS/MS. Three pseudouridines were found in H. marismortui, located at positions 1956, 1958, and 2621 corresponding to Escherichia coli positions 1915, 1917, and 2586, respectively. The three pseudouridines are all in locations found in other organisms. Previous reports of a larger number of pseudouridines in this organism were incorrect. Three pseudouridines and one 3-methyl pseudouridine (m3Psi) were found in D. radiodurans 23S RNA at positions 1894, 1898 (m3Psi), 1900, and 2584, the m3Psi site being determined by a novel application of mass spectrometry. These positions correspond to E. coli positions 1911, 1915, 1917, and 2605, which are also pseudouridines in E. coli (1915 is m3Psi). The pseudouridines in the helix 69 loop, residues 1911, 1915, and 1917, are in positions highly conserved among all phyla. Pseudouridine 2584 in D. radiodurans is conserved in eubacteria and a chloroplast but is not found in archaea or eukaryotes, whereas pseudouridine 2621 in H. marismortui is more conserved in eukaryotes and is not found in eubacteria. All the pseudoridines are near, but not exactly at, nucleotides directly involved in various aspects of ribosome function. In addition, two D. radiodurans Psi synthases responsible for the four Psi were identified.


Subject(s)
Deinococcus/chemistry , Haloarcula marismortui/chemistry , Pseudouridine/analogs & derivatives , Pseudouridine/chemistry , RNA, Archaeal/chemistry , RNA, Bacterial/chemistry , RNA, Ribosomal, 23S/chemistry , Base Sequence , Deinococcus/genetics , Escherichia coli/chemistry , Escherichia coli/genetics , Haloarcula marismortui/genetics , Hydro-Lyases/genetics , Nucleic Acid Conformation , RNA, Archaeal/genetics , RNA, Bacterial/genetics , RNA, Ribosomal, 23S/genetics
12.
Article in English | MEDLINE | ID: mdl-15043135

ABSTRACT

The tricyclic wye nucleoside family of eight known members constitutes one of the most complex and interesting series of posttranscriptionally modified nucleosides in transfer RNA. The principal reaction paths represented in collision-induced dissociation mass spectra of wye bases and their analogs have been studied in order to determine those structural features that can be readily established by mass spectrometry. The main routes of fragmentation are determined by the presence vs. absence of an amino acid side chain at C-7 (1H-imidazo[1,2-a]purine nomenclature). The common methionine-related side chain is cleaved at two points, providing a ready means of establishing the presence and net level of side chain modification. For those molecules without a side chain, the initial reaction steps are characteristically controlled by the presence vs. absence of methyl at N-4, allowing determination of the methylation status of that site. In the latter case initial opening of the central (pyrimidine) ring, in analogy to the dissociation behavior of guanine, causes loss of identity of C-6/C-7 so that placement of a single methyl at either site is not possible. Subsequent complex reaction paths follow, which include loss of CO and sequential loss of two molecules of HCN.


Subject(s)
Nucleosides/chemistry , RNA, Transfer/chemistry , Humans , Spectrometry, Mass, Electrospray Ionization
13.
Nucleic Acids Symp Ser (Oxf) ; (48): 263-4, 2004.
Article in English | MEDLINE | ID: mdl-17150579

ABSTRACT

Sequence placement of post-transcriptionally modified nucleosides in tRNA can be experimentally difficult, particularly in cases involving new or unexpected modifications or sequence sites. We describe a mass spectrometry-based approach to this problem, involving the following steps: crude isolations of one or several tRNAs by HPLC from an unfractionated tRNA mixture; digestion to oligonucleotide mixtures by RNase T1; analysis by combined HPLC/electrospray ionization-MS for recognition of modifications; and direct gas-phase sequencing of selected targets in the mixture by LC/MS/MS. Isoacceptor identity can be established in favorable cases when tRNA gene sequences are available.


Subject(s)
Nucleotides/analysis , RNA, Transfer/chemistry , Sequence Analysis, RNA/methods , Chromatography, High Pressure Liquid , Mass Spectrometry , Ribonuclease T1/metabolism , Saccharomyces cerevisiae , Sulfolobus
SELECTION OF CITATIONS
SEARCH DETAIL
...