Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Evol Biol ; 50(3): 300-317, 2023.
Article in English | MEDLINE | ID: mdl-37576439

ABSTRACT

A widespread pattern in vertebrate life-history evolution is for species to evolve towards either fast or slow life histories; however, the underlying causes of this pattern remain unclear. Toothed whales (Odontoceti) are a diverse group with a range of body sizes and life histories, making them an ideal model to investigate potential drivers of this dichotomy. Using ancestral reconstruction, we identified that certain groups of odontocetes evolved more-streamlined, presumably faster, body shapes around the same time that killer whales (Orcinus orca) evolved into whale predators approximately 1 Mya during the Pleistocene. This suggests that the evolution of a streamlined body shape may have been an adaptation to escape killer whale predation, leading to longer life-history events. To test this hypothesis, we performed a cluster analysis of odontocete whales and confirmed the dual pattern of life-history traits, with one group referred to as 'reproducers' characterized by early age of maturity, short gestation, short interbirth interval, and short lifespan, and the other group referred to as 'bet-hedgers' exhibiting the opposite pattern. However, we found that life history grouping was relatively unrelated to whale shape (i.e., more streamlined or less streamlined). Therefore, we incorporated principal component results into mixed effects models, and the model results indicated that body shape was positively related to neonate length (a measure of investment in progeny), but not significantly related to the temporal life-history traits. Thus, whale body shape is not a sufficient explanation for the evolution of fast-slow life histories in odontocete whales. Supplementary Information: The online version contains supplementary material available at 10.1007/s11692-023-09605-4.

2.
Ecol Evol ; 10(7): 3450-3462, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32274001

ABSTRACT

Compound-specific stable isotope analysis (CSIA) of amino acids (AAs) has been rapidly incorporated in ecological studies to resolve consumer trophic position (TP). Differential 15N fractionation of "trophic" AAs, which undergo trophic 15N enrichment, and "source" AAs, which undergo minimal trophic 15N enrichment and serve as a proxy for primary producer δ15N values, allows for internal calibration of TP. Recent studies, however, have shown the difference between source and trophic AA δ15N values in higher marine consumers is less than predicted from empirical studies of invertebrates and fish. To evaluate CSIA-AA for estimating TP of cetaceans, we compared source and trophic AA δ15N values of multiple tissues (skin, baleen, and dentine collagen) from five species representing a range of TPs: bowhead whales, beluga whales, short-beaked common dolphins, sperm whales, and fish-eating (FE) and marine mammal-eating (MME) killer whale ecotypes. TP estimates (TPCSIA) using several empirically derived equations and trophic discrimination factors (TDFs) were 1-2.5 trophic steps lower than stomach content-derived estimates (TPSC) for all species. Although TPCSIA estimates using dual TDF equations were in better agreement with TPSC estimates, our data do not support the application of universal or currently available dual TDFs to estimate cetacean TPs. Discrepancies were not simply due to inaccurate TDFs, however, because the difference between consumer glutamic acid/glutamine (Glx) and phenylalanine (Phe) δ15N values (δ15NGlx-Phe) did not follow expected TP order. In contrast to pioneering studies on invertebrates and fish, our data suggest trophic 15N enrichment of Phe is not negligible and should be examined among the potential mechanisms driving "compressed" and variable δ15NGlx-Phe values at high TPs. We emphasize the need for controlled diet studies to understand mechanisms driving AA-specific isotopic fractionation before widespread application of CSIA-AA in ecological studies of cetaceans and other marine consumers.

3.
Sci Total Environ ; 551-552: 92-100, 2016 May 01.
Article in English | MEDLINE | ID: mdl-26874765

ABSTRACT

Zooplankton play a central role in marine food webs, dictating the quantity and quality of energy available to upper trophic levels. They act as "keystone" species in transfer of mercury (Hg) up through the marine food chain. Here, we present the first Pan-Arctic overview of total and monomethylmercury concentrations (THg and MMHg) and stable isotope ratios of carbon (δ(13)C) and nitrogen (δ(15)N) in selected zooplankton species by assembling data collected between 1998 and 2012 from six arctic regions (Laptev Sea, Chukchi Sea, southeastern Beaufort Sea, Canadian Arctic Archipelago, Hudson Bay and northern Baffin Bay). MMHg concentrations in Calanus spp., Themisto spp. and Paraeuchaeta spp. were found to increase with higher δ(15)N and lower δ(13)C. The southern Beaufort Sea exhibited both the highest THg and MMHg concentrations. Biomagnification of MMHg between Calanus spp. and two of its known predators, Themisto spp. and Paraeuchaeta spp., was greatest in the southern Beaufort Sea. Our results show large geographical variations in Hg concentrations and isotopic signatures for individual species related to regional ecosystem features, such as varying water masses and freshwater inputs, and highlight the increased exposure to Hg in the marine food chain of the southern Beaufort Sea.


Subject(s)
Environmental Monitoring , Mercury/analysis , Water Pollutants, Chemical/analysis , Zooplankton/chemistry , Amphipoda , Animals , Arctic Regions , Canada , Carbon , Copepoda , Ecosystem , Nitrogen
SELECTION OF CITATIONS
SEARCH DETAIL
...