Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Extracell Vesicles ; 6(1): 1333882, 2017.
Article in English | MEDLINE | ID: mdl-28717424

ABSTRACT

Extracellular vesicles (EVs) hold great potential as novel systems for nucleic acid delivery due to their natural composition. Our goal was to load EVs with microRNA that are synthesized by the cells that produce the EVs. HEK293T cells were engineered to produce EVs expressing a lysosomal associated membrane, Lamp2a fusion protein. The gene encoding pre-miR-199a was inserted into an artificial intron of the Lamp2a fusion protein. The TAT peptide/HIV-1 transactivation response (TAR) RNA interacting peptide was exploited to enhance the EV loading of the pre-miR-199a containing a modified TAR RNA loop. Computational modeling demonstrated a stable interaction between the modified pre-miR-199a loop and TAT peptide. EMSA gel shift, recombinant Dicer processing and luciferase binding assays confirmed the binding, processing and functionality of the modified pre-miR-199a. The TAT-TAR interaction enhanced the loading of the miR-199a into EVs by 65-fold. Endogenously loaded EVs were ineffective at delivering active miR-199a-3p therapeutic to recipient SK-Hep1 cells. While the low degree of miRNA loading into EVs through this approach resulted in inefficient distribution of RNA cargo into recipient cells, the TAT TAR strategy to load miRNA into EVs may be valuable in other drug delivery approaches involving miRNA mimics or other hairpin containing RNAs.

2.
Virology ; 292(1): 137-49, 2002 Jan 05.
Article in English | MEDLINE | ID: mdl-11878916

ABSTRACT

Human immunodeficiency virus type 1 (HIV-1) protease activity is targeted at nine cleavage sites comprising different amino acid sequences in the viral Gag-Pol polyprotein. Amino acid polymorphisms in protease and in regions of Gag, particularly p7(NC) and the C-cleavage site between p2 and p7(NC), occur in natural variants of HIV-1 within infected patients. Studies were designed to examine the role of natural polymorphisms in protease and to identify determinants in Gag that modulate protease processing activity. Closely related Gag-Pol regions from an HIV-1-infected mother and two children were evaluated for processing in an inducible expression system, for protease activity on cleavage-site analogues, and for impact on replication by recombinant viruses. Gag-Pol regions displayed one of three processing phenotypes based on the appearance of Gag intermediates and accumulation of mature p24(CA). Gag-Pol regions that were processed rapidly to produce p24(CA) resulted in high-level replication by recombinant viruses, while slow-processing Gag-Pol variants resulted in recombinant viruses that replicated with reduced kinetics in both T cell lines and peripheral blood mononuclear cells. Direct impact by Gag sequences on processing by protease was assessed by construction of chimeric Gag-Pol regions and by site-directed mutagenesis. Optimal protease activity occurred when Gag and Pol regions were derived from the same gag-pol allele. Heterologous Gag regions generally diminished rates and extent of protease processing. Natural polymorphisms in novel positions in p7(NC) and the C-cleavage site have a dominant effect on protease processing activity. Accumulation of Gag products after processing at the C site appears to delay subsequent cleavage and production of mature p24(CA).


Subject(s)
Amino Acid Sequence , Capsid Proteins , Capsid/genetics , Fusion Proteins, gag-pol/metabolism , Gene Products, gag/genetics , HIV Protease/metabolism , Polymorphism, Genetic , Viral Proteins , Alleles , Capsid/metabolism , Fusion Proteins, gag-pol/genetics , Gene Products, gag/metabolism , HIV Infections/virology , HIV-1/genetics , HIV-1/metabolism , HIV-1/physiology , Humans , Jurkat Cells , Molecular Sequence Data , Phenotype , Virus Replication , gag Gene Products, Human Immunodeficiency Virus
3.
AIDS Res Hum Retroviruses ; 18(5): 353-62, 2002 Mar 20.
Article in English | MEDLINE | ID: mdl-11897037

ABSTRACT

Non-syncytium-inducing (NSI) strains of HIV-1 prevail among most infected children, including pediatric patients who develop advanced disease, severe immune suppression, and die. A study was designed to address the hypothesis that genotypic and/or phenotypic markers can distinguish NSI viruses isolated during early infection from NSI viruses found in advanced disease. Primary HIV-1 isolates, which were obtained from 43 children, adolescents, and adults who displayed a cross-section of clinical disease and immune suppression but were untreated by protease inhibitor antiretroviral therapy, were characterized for replication phenotype in different cell types. Most individuals (81%) harbored NSI viruses and almost half had progressed to advanced disease or severe immune deficiency. About 51% of NSI isolates produced low levels of p24 antigen (median, 142 pg/ml) in monocyte-derived macrophages (MDMs), 31% produced medium levels (median, 1584 pg/ml), and 17% produced high levels (median, 81,548 pg/ml) (p < 0.001). Seven of eight syncytium-inducing isolates also replicated in MDMs and displayed a dual-tropic phenotype that was associated with advanced disease. Replication of NSI viruses in MDMs varied as much as 100- to 1000-fold and was independent of replication in peripheral blood mononuclear cells. Replication in MDMs provided a clear biological feature to distinguish among viruses that were otherwise identical by NSI phenotype, V3 genotype, and CCR5 coreceptor usage. Low-level MDM replication was characteristic of viruses isolated from asymptomatic individuals, including long-term survivors. Enhanced MDM replication was related to morbidity and mortality among patients. Replication levels in MDMs provide a novel prognostic indicator of pathogenic potential by NSI viruses.


Subject(s)
HIV Infections/virology , HIV-1/isolation & purification , Macrophages/virology , Virus Replication , Acquired Immunodeficiency Syndrome/blood , Acquired Immunodeficiency Syndrome/pathology , Acquired Immunodeficiency Syndrome/virology , Adolescent , Adult , Child , Child, Preschool , Coculture Techniques , Cohort Studies , Cross-Sectional Studies , DNA, Viral/analysis , Disease Progression , Genotype , Giant Cells/virology , HIV Core Protein p24/analysis , HIV Infections/blood , HIV Infections/pathology , HIV-1/genetics , HIV-1/growth & development , Humans , Infant , Monocytes/virology , Phenotype , Phylogeny , Prognosis , Viral Envelope Proteins/chemistry , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...