Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 16(1): 227-36, 2014 Jan 07.
Article in English | MEDLINE | ID: mdl-24247646

ABSTRACT

Novel integration of in situ near infrared (NIR) thermal imaging, vibrational Raman spectroscopy, and Fourier-transform infrared emission spectroscopy (FTIRES) coupled with traditional electrochemical measurements has been used to probe chemical and thermal properties of Ni-based, solid oxide fuel cell (SOFC) anodes operating with methane and simulated biogas fuel mixtures at 800 °C. Together, these three non-invasive optical techniques provide direct insight into the surface chemistry associated with device performance as a function of cell polarization. Specifically, data from these complementary methods measure with high spatial and temporal resolution thermal gradients and changes in material and gas phase composition in operando. NIR thermal images show that SOFC anodes operating with biogas undergo significant cooling (ΔT = -13 °C) relative to the same anodes operating with methane fuel (ΔT = -3 °C). This result is general regardless of cell polarization. Simultaneous Raman spectroscopic measurements are unable to detect carbon formation on anodes operating with biogas. Carbon deposition is observable during operation with methane as evidenced by a weak vibrational band at 1556 cm(-1). This feature is assigned to highly ordered graphite. In situ FTIRES corroborates these results by identifying relative amounts of CO2 and CO produced during electrochemical removal of anodic carbon previously formed from an incident fuel feed. Taken together, these three optical techniques illustrate the promise that complementary, in situ methods have for identifying electrochemical oxidation mechanisms and carbon-forming pathways in high temperature electrochemical devices.


Subject(s)
Bioelectric Energy Sources , Biofuels , Gases/chemistry , Methane/chemistry , Optical Phenomena , Oxides/chemistry , Temperature , Electrochemistry , Electrodes , Graphite/chemistry , Membranes, Artificial , Oxidation-Reduction
2.
J Phys Chem Lett ; 4(8): 1310-4, 2013 Apr 18.
Article in English | MEDLINE | ID: mdl-26282145

ABSTRACT

Fuel interactions on solid oxide fuel cell (SOFC) anodes are studied with in situ Fourier transform infrared emission spectroscopy (FTIRES). SOFCs are operated at 800 °C with CH4 as a representative hydrocarbon fuel. IR signatures of gas-phase oxidation products, CO2(g) and CO(g), are observed while cells are under load. A broad feature at 2295 cm(-1) is assigned to CO2 adsorbed on Ni as a CH4 oxidation intermediate during cell operation and while carbon deposits are electrochemically oxidized after CH4 operation. Electrochemical control provides confirmation of the assignment of adsorbed CO2. FTIRES has been demonstrated as a viable technique for the identification of fuel oxidation intermediates and products in working SOFCs, allowing for the elucidation of the mechanisms of fuel chemistry.

3.
J Phys Chem Lett ; 3(20): 3053-64, 2012 Oct 18.
Article in English | MEDLINE | ID: mdl-26292249

ABSTRACT

Solid oxide fuels cells (SOFCs) are promising devices for versatile and efficient power generation with fuel flexibility, but their viability is contingent upon understanding chemical and material processes to improve their performance and durability. Newly developed in situ optical methods provide new insight into how carbon deposition varies with different hydrocarbon and alcohol fuels and depends on operating conditions. Some findings, such as heavier hydrocarbon fuels forming more carbon than lighter fuels, are expected, but other discoveries are surprising. For example, methanol shows a greater tendency to form carbon deposits than methane at temperatures below 800 °C, and kinetically controlled steam reforming with ethanol at high temperatures (∼800 °C) is less detrimental to SOFC performance than operating the device with dry methanol as the fuel. In situ optical techniques will continue to provide the chemical information and mechanistic insight that is critical for SOFCs to become a viable energy conversion technology.

4.
Article in English | MEDLINE | ID: mdl-20636038

ABSTRACT

Thermal imaging and vibrational spectroscopy have become important tools for examining the physical and chemical changes that occur in real time in solid-oxide fuel cells (SOFCs). Imaging techniques can resolve temperature differences as fine as 0.1 degrees C across a SOFC electrode at temperatures higher than 600 degrees C. Vibrational spectroscopy can identify molecular species and changes in material phases in operating SOFCs. This review discusses the benefits and challenges associated with directly observing processes that are important to SOFC performance and durability. In situ optical methods can provide direct insight into reaction mechanisms that can be inferred only indirectly from electrochemical measurements such as voltammetry and electrochemical impedance spectroscopy and from kinetic models and postmortem, ex situ examinations of SOFC components. Particular attention is devoted to recent advances that, hopefully, will spur the development of new generations of efficient, versatile energy-producing devices.


Subject(s)
Electric Power Supplies , Electrochemical Techniques , Electrodes , Spectrophotometry, Infrared , Spectrum Analysis, Raman
5.
Langmuir ; 26(9): 6809-17, 2010 May 04.
Article in English | MEDLINE | ID: mdl-20136124

ABSTRACT

Raman spectroscopy and electrochemical methods were used to study the behavior of the model adsorbate benzenethiol (BT) on nanostructured Pt, Pd, and PtPd electrodes as a function of applied potential. Benzenethiol adsorbs out of ethanolic solutions as the corresponding thiolate, and voltammetric stripping data reveal that BT is oxidatively removed from all of the nanostructured metals upon repeated oxidative and reductive cycling. Oxidative stripping potentials for BT increase in the order Pt < PtPd < Pd, indicating that BT adsorbs most strongly to nanoscale Pd. Yet, BT Raman scattering intensities, measured in situ over time scales of minutes to hours, are most persistent on the film of nanostructured Pt. Raman spectra indicate that adsorbed BT desorbs from nanoscale Pt at oxidizing potentials via cleavage of the Pt-S bond. In contrast, on nanoscale Pd and PtPd, BT is irreversibly lost due to cleavage of BT C-S bonds at oxidizing potentials, which leaves adsorbed sulfur oxides on Pd and PtPd films and effects the desulfurization of BT. While Pd and PtPd films are less sulfur-resistant than Pt films, palladium oxides, which form at higher potentials than Pt oxides, oxidatively desulfurize BT. In situ spectroelectrochemical Raman spectroscopy provides real-time, chemically specific information that complements the cyclic voltammetric data. The combination of these techniques affords a powerful and convenient method for guiding the development of sulfur-tolerant PEMFC catalysts.

6.
J Chem Phys ; 129(2): 024513, 2008 Jul 14.
Article in English | MEDLINE | ID: mdl-18624544

ABSTRACT

Evidence for ion pair formation in aqueous bis(2-ethylhexyl) sulfosuccinate (AOT) reverse micelles (RMs) was obtained from infrared spectra of azide and cyanate with Li(+), Na(+), K(+), and NH(4)(+) counterions. The anions' antisymmetric stretching bands near 2000 cm(-1) are shifted to higher frequency (blueshifted) in LiAOT and to a lesser extent in NaAOT, but they are very similar to those in bulk water with K(+) and NH(4)(+) as the counterions. The shifts are largest for low values of w(o) = [water]/[AOT] and approach the bulk value with increasing w(o). The blueshifts are attributed to ion pairing between the anions and the counterions. This interpretation is reinforced by the similar trend (Li(+)>Na(+)>K(+)) for producing contact ion pairs with the metal cations in bulk dimethyl sulfoxide (DMSO) solutions. We find no evidence of ion pairs being formed in NH(4)AOT RMs, whereas ammonium does form ion pairs with azide and cyanate in bulk DMSO. Studies are also reported for the anions in formamide-containing AOT RMs, in which blueshifts and ion pair formation are observed more than in the aqueous RMs. Ion pairs are preferentially formed in confined RM systems, consistent with the well established ideas that RMs exhibit reduced polarity and a disrupted hydrogen bonding network compared to bulk water and that ion-specific effects are involved in mediating the structure of species at interfaces.

7.
Anal Chem ; 79(6): 2367-72, 2007 Mar 15.
Article in English | MEDLINE | ID: mdl-17295449

ABSTRACT

Existing electrochemical experiments and models of fuel oxidation postulate about the importance of different oxidation pathways and relative fuel conversion efficiencies, but specific information is often lacking. Experiments described below present the first direct, in situ measurements of relevant chemical species formed on solid oxide fuel cell (SOFC) cermet anodes operating with both butane and CO fuel feeds. Raman spectroscopy is used to acquire vibrational spectra from SOFC anodes at 715 degrees C during operation. Both C4H10 and CO form graphitic intermediates. In the limit of a large oxide flux, excess butane forms ordered graphite but only transiently. At higher cell potentials (e.g., less current being drawn) ordered and disordered graphite form on the Ni cermet anode following exposure to butane, and under open circuit voltage (OCV) conditions the graphite persists indefinitely. The chemistry of CO oxidation is such that ordered graphite and a Ni-COO intermediate form only at intermediate cell potentials. Concurrent voltammetry studies show that the formation of graphite with butane at OCV leads first to decreased cell performance after exposure to 25 cm3 butane, then recovered performance after 75 cm3. CO voltammetry data show that at lower potentials the oxide flux through the YSZ electrolyte is sufficient to oxidize the Ni in the anode especially near the interface with the electrolyte.

8.
J Phys Chem B ; 110(35): 17305-8, 2006 Sep 07.
Article in English | MEDLINE | ID: mdl-16942063

ABSTRACT

Chemical and material processes occurring in high temperature environments are difficult to quantify due to a lack of experimental methods that can probe directly the species present. In this letter, Raman spectroscopy is shown to be capable of identifying in-situ and noninvasively changes in material properties as well as the formation and disappearance of molecular species on surfaces at temperatures of 715 degrees C. The material, yttria-stabilized zirconia or YSZ, and the molecular species, Ni/NiO and nanocrystalline graphite, factor prominently in the chemistry of solid oxide fuel cells (SOFCs). Experiments demonstrate the ability of Raman spectroscopy to follow reversible oxidation/reduction kinetics of Ni/NiO as well as the rate of carbon disappearance when graphite, formed in-situ, is exposed to a weakly oxidizing atmosphere. In addition, the Raman active phonon mode of YSZ shows a temperature dependent shift that correlates closely with the expansion of the lattice parameter, thus providing a convenient internal diagnostic for identifying thermal gradients in high temperature systems. These findings provide direct insight into processes likely to occur in operational SOFCs and motivate the use of in-situ Raman spectroscopy to follow chemical processes in these high-temperature, electrochemically active environments.

9.
Environ Sci Technol ; 40(17): 5574-9, 2006 Sep 01.
Article in English | MEDLINE | ID: mdl-16999142

ABSTRACT

Solid oxide fuel cells (SOFCs) are electrochemical devices that rely on ion migration through a solid-state electrolyte to oxidize fuel and produce electricity. The present study employs Fourier transform infrared spectroscopy to quantify the exhaust of an SOFC operating with fuel flows of methane over Ni/YSZ cermet anodes and butane over Ni/YSZ and Cu/CeO2/YSZ cermet anodes. Data show that hydrocarbon fuels can participate in a variety of different reactions including direct electrochemical oxidation, various reforming processes, and surface-catalyzed carbon deposition. These findings have direct consequences for assessing the environmental impact of SOFCs in terms of the exhaust discharged from devices operating with common hydrocarbon fuel feeds. In the work presented below, a measure of fuel oxidation efficiency is found by comparing the partial pressure of CO2 (P(CO2)) in the SOFC exhaust to the partial pressure of CO (P(CO)). The fuel anode combination with the largest P(CO2)/P(CO) ratio is the C4H10 over Cu/CeO2 combination (0.628 +/- 0.016). The CH4 over Ni cell type has the second highest ratio (0.486 +/- 0.023). The C4H10 over Ni cell type gives a ratio of 0.224 +/- 0.001. Attempts to balance the carbon content of the fuel feed and exhaust lead to predictions of SOFC fuel oxidation mechanisms.


Subject(s)
Hydrocarbons/chemistry , Oxides/chemistry , Oxidation-Reduction , Spectrum Analysis
10.
Anal Chem ; 77(6): 1791-5, 2005 Mar 15.
Article in English | MEDLINE | ID: mdl-15762587

ABSTRACT

The structural properties of polycrystalline yttria-stabilized zirconia (YSZ) have been studied using FT-Raman spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy (XPS). Yttria content was varied between 8 and 15% (by mole fraction) to determine compositional effects on YSZ phonon structure, lattice parameter, and oxidation state. The dominant feature in the low-frequency Raman spectrum correlates quite closely with the material's sole (cubic) lattice parameter. XPS measurements of typical YSZ samples show only a single species of both Y and Zr. After exposing YSZ to a reducing environment (H2) at elevated temperatures (1000 degrees C), however, the XPS spectra of YSZ show new features at lower binding energy for both Y and Zr. Angle-resolved XPS measurements suggest that these reduced forms of Y and Zr exist only within the first few molecular layers of the sample. This treatment does not effect the XRD pattern, nor does it change the low-frequency phonon structure observed in the Raman spectrum, although the Raman spectrum does experience approximately 50% reduction in overall signal intensity. These disparities are reconciled with each other based on differences in each technique's sampling depth. The impact that surface-reduced YSZ may have on the chemistry occurring within solid oxide fuel cells is discussed briefly.

SELECTION OF CITATIONS
SEARCH DETAIL
...