Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-37541323

ABSTRACT

In fish, the skin is directly exposed to multiple environmental stressors and provides the first line of defense against harmful external factors. It turned out that cortisol and melatonin (Mel) are involved in fish cutaneous stress response system (CSRS) similar to mammalian. This study investigates the mode of action of CSRS in two teleost species of different biology and skin characteristics, the three-spined stickleback and the European flounder, after exposure to oxidative stress induced by a potassium dichromate solution. The cutaneous stress response system presents different ways of action in two studied species: Mel concentration increases in the skin of both species, but cortisol concentration increases in the skin only in sticklebacks. Data suggest that stickleback skin cells can produce cortisol. However, cortisol is not involved in the response to oxidative stress in flounders. In stickleback skin, two genes encoding AANAT and ASMT/HIOMT (enzymes involved in Mel synthesis), aanat1a and asmt2, are expressed, but in flounder skin, only one, asmtl. Because gene expression does not change in stickleback skin after exposure to stress, the source of increased Mel is probably outside the skin. A lack of expression of the gene encoding AANAT in flounder skin strongly suggests that Mel is transported to the skin by the bloodstream from other sites of synthesis. Pigment dispersion in the skin after exposure to oxidative stress is found only in sticklebacks.


Subject(s)
Flounder , Melatonin , Smegmamorpha , Animals , Flounder/metabolism , Hydrocortisone , Smegmamorpha/genetics , Fishes/metabolism , Oxidative Stress , Arylalkylamine N-Acetyltransferase/genetics , Mammals/metabolism
2.
Cells ; 12(13)2023 07 04.
Article in English | MEDLINE | ID: mdl-37443805

ABSTRACT

Telomerase activity has been found in the somatic tissues of rainbow trout. The enzyme is essential for maintaining telomere length but also assures homeostasis of the fish organs, playing an important role during tissue regeneration. The unique morphological and physiological characteristics of triploid rainbow trout, when compared to diploid specimens, make them a promising model for studies concerning telomerase activity. Thus, in this study, we examined the expression of the Tert gene in various organs of subadult and adult diploid and triploid rainbow trout females. Upregulated Tert mRNA transcription was observed in all the examined somatic tissues sampled from the triploid fish when compared to diploid individuals. Contrastingly, Tert expression in the ovaries was significantly decreased in the triploid specimens. Within the diploids, the highest expression of Tert was observed in the liver and in the ovaries of the subadult individuals. In the triploids, Tert expression was increased in the somatic tissues, while the ovaries exhibited lower activity of telomerase compared to other organs and decreased compared to the ovaries in the diploids. The ovaries of triploid individuals were underdeveloped, consisting of only a few oocytes. The lack of germ cells, which are usually characterized by high Tert expression, might be responsible for the decrease in telomerase activity in the triploid ovaries. The increase in Tert expression in triploid somatic tissues suggests that they require higher telomerase activity to cope with environmental stress and maintain internal homeostasis.


Subject(s)
Oncorhynchus mykiss , Telomerase , Animals , Female , Triploidy , Ovary/metabolism , Diploidy , Oncorhynchus mykiss/genetics , Oncorhynchus mykiss/metabolism , Telomerase/genetics , Telomerase/metabolism
3.
Article in English | MEDLINE | ID: mdl-35358732

ABSTRACT

The skin being a passive biological barrier that defends the organism against harmful external factors is also a site of action of the system responding to stress. It appears that melatonin (Mel) and its biologically active metabolite AFMK (N1-acetyl-N2-formyl-5-methoxykynuramine), both known as effective antioxidants, together with cortisol, set up a local (cutaneous) stress response system (CSRS) of fish, similar to that of mammals. Herein we comment on recent studies on CSRS in fish and show the response of three-spined stickleback skin to oxidative stress induced by potassium dichromate. Our study indicates that exposure of the three-spined stickleback to K2Cr2O7 affects Mel and cortisol levels and pigment dispersion in melanophores in the skin. In our opinion, an increased concentration of Mel and cortisol in the skin may be the strategy to cope with oxidative stress, where both components act locally to prevent damage caused by active oxygen molecules. Furthermore, the pigment dispersion may be a valuable, easy-to-observe mark of oxidative stress, useful in the evaluation of fish welfare.


Subject(s)
Melatonin , Animals , Antioxidants/metabolism , Hydrocortisone , Kynuramine , Mammals/metabolism , Melatonin/metabolism , Oxidative Stress
4.
J Appl Genet ; 62(1): 151-164, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33128700

ABSTRACT

Arctic char (Salvelinus alpinus) and brook trout (Salvelinus fontinalis) hybridize and their offspring is viable and fertile. This may be a real treat for the native European stocks of Arctic char which gene pools might be unintendedly contaminated with the genetic elements of brook trout. On the other hand, hybrids of these two species are appreciated by customers and have some potential for the aquaculture. Moreover, Salvelinus hybrids and backcross individuals are interesting models in the research focused on influence of hybridization on the genomic organization and chromosome rearrangements. Thus, the main goal of the present study was to examine chromosomes of Arctic char × brook trout F1, F2 hybrids and backcross individuals and compare with genomic information concerning parental species to recognize karyotypic changes provoked by the hybridization events. Application of conventional and molecular (FISH) techniques allow to identify characteristic chromosomes for both parental species in the hybrid progeny and show multiplicity of cytotypes among different types of crosses with variability in structure and number of chromosome (81-85) and chromosome arm (99-101). Chromosome fragment was detected in the karyotype of one F1 and one backcross individual and the presence of one triploid (3n) fish was documented. Occurrence of chromosomes containing internally located telomeric sequences (ITS) inherited after brook trout or both parental species was shown in F1 and backcross progeny. Moreover, additional CMA3-positive signal on chromosome from Arctic char pair no. 2 in F1 fish and interstitially located active NOR visible on subtelo-acrocentric (F2 hybrid) and acrocentric (Sf × H individual) chromosomes were detected. Described polymorphic chromosomes together with specific, interstitial location of CMA3-positive found in F2 and Sf × H hybrids and DAPI-positive regions observed in H × Sa fish at different uniarmed chromosomes pair presumably are remnants of chromosomal rearrangements. Provided results strongly indicate that the hybridization process influenced the genome organization in the Salvelinus hybrid progeny.


Subject(s)
Hybridization, Genetic , Karyotyping , Trout , Animals , Chromosome Aberrations , Telomere , Trout/classification , Trout/genetics
5.
Article in English | MEDLINE | ID: mdl-31841711

ABSTRACT

Melatonin synthesis is controlled by aralkylamine N-acetyltransferase (AANAT: EC 2.3.1.87) acetylating serotonin (5-hydroxytryptamine; 5-HT) to N-acetylserotonin (NAS), and N-acetylserotonin O-methyltransferase (ASMT: EC 2.1.1.4) methylating NAS to melatonin (Mel; N-acetyl-5-methoxytryptamine). We examined the levels of expression of the aanat and asmt genes, Mel concentrations as well as AANAT isozyme activity in the eyeball (with retina) and skin of the three-spined stickleback (Gasterosteus aculeatus), at noon and midnight. We found mRNA of four genes (aanat1a, snat, asmt and asmt2) in the eyeball, and two (aanat1a and asmt2) in the skin. The presence of two transcripts of genes encoding AANAT and two of ASMT in the eyeball at noon and midnight, suggests activity of AANAT and ASMT isozymes in metabolic pathways besides "the way to melatonin", all the more so because day/night changes in Mel concentration do not follow the changes in either the expression of genes or the activity of AANAT. The high effectiveness of noon NAS synthesis in the eyeball at low substrate concentrations, which is not reflected in high Mel production, suggests the function of eye NAS beyond that of a precursor to the biosynthesis of Mel. The inhibition of AANAT isozyme activity by product observed in the eyeball may be one of the mechanisms of 5-HT husbanding in the eye (retina). The presence of transcripts of genes encoding both AANAT and ASMT and the activity of AANAT, at noon and midnight, supports a local Mel synthesis in the sticklebacks' skin.


Subject(s)
Acetylserotonin O-Methyltransferase/metabolism , Arylalkylamine N-Acetyltransferase/metabolism , Melatonin/metabolism , Smegmamorpha/metabolism , Acetylserotonin O-Methyltransferase/genetics , Animals , Arylalkylamine N-Acetyltransferase/genetics , Eye/metabolism , Skin/metabolism , Smegmamorpha/genetics , Smegmamorpha/growth & development
6.
Reprod Biol ; 13(2): 105-12, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23719114

ABSTRACT

Failure of interspecific androgenesis between brook charr (Salvelinus fontinalis, Mitchill 1814) and Arctic charr (Salvelinus alpinus, L.) has been attributed to the conflict between the egg cytoplasm of one species and the sperm nucleus of the other species. To overcome this incompatibility, sperm derived from the brook charr×Arctic charr hybrid male was used to induce androgenetic development in eggs originating from the parental species as well as their hybrids. The eggs were subjected to 420Gy of X-radiation to damage the maternal nuclear DNA and inseminated with untreated sperm. Haploid zygotes were exposed to high hydrostatic pressure shock (7000psi for 4min), which was applied 420min after insemination to inhibit the first cell cleavage and recover the diploid state of the zygote. The androgenetic diploid offspring that hatched from the brook charr, the Arctic charr and the hybrids eggs had survival rates of 4.7±0.6%, 1.2±0.4% and 16.8±0.5%, respectively. Drastic mortality among the hatched androgenetic individuals was observed within the first five months of rearing. Cytogenetic analysis of the androgenetic progenies exhibited residues of the irradiated maternal nuclear genome in the form of radiation-induced chromosome fragments in 47% of the specimens that were examined. Interactions between the egg cytoplasm and the sperm nucleus, the low quality of the gametes, the expression of homozygous paternal lethal alleles and the incomplete inactivation of the maternal chromosomes were identified as factors responsible for the large mortality among androgenetic embryos and hatchlings.


Subject(s)
Breeding/methods , Fertilization in Vitro/veterinary , Hybridization, Genetic , Inheritance Patterns/genetics , Reproduction, Asexual/physiology , Trout/physiology , Analysis of Variance , Animals , Cytogenetic Analysis , Fertilization in Vitro/methods , Male , Ovum/physiology , Ovum/radiation effects , Pressure , Survival Rate , Trout/genetics , Zygote/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...