Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Brain Sci ; 14(5)2024 May 07.
Article in English | MEDLINE | ID: mdl-38790443

ABSTRACT

Orexin/hypocretin terminals innervate the dorsal raphe nucleus (DRN), which projects to motor control areas important for spontaneous physical activity (SPA) and energy expenditure (EE). Orexin receptors are expressed in the DRN, and obesity-resistant (OR) rats show higher expression of these receptors in the DRN and elevated SPA/EE. We hypothesized that orexin-A in the DRN enhances SPA/EE and that DRN-GABA modulates the effect of orexin-A on SPA/EE. We manipulated orexin tone in the DRN either through direct injection of orexin-A or through the chemogenetic activation of lateral-hypothalamic (LH) orexin neurons. In the orexin neuron activation experiment, fifteen minutes prior to the chemogenetic activation of orexin neurons, the mice received either the GABA-agonist muscimol or antagonist bicuculline injected into the DRN, and SPA/EE was monitored for 24 h. In a separate experiment, orexin-A was injected into the DRN to study the direct effect of DRN orexin on SPA/EE. We found that the activation of orexin neurons elevates SPA/EE, and manipulation of GABA in the DRN does not alter the SPA response to orexin neuron activation. Similarly, intra-DRN orexin-A enhanced SPA and EE in the mice. These results suggest that orexin-A in the DRN facilitates negative energy balance by increasing physical activity-induced EE, and that modulation of DRN orexin-A is a potential strategy to promote SPA and EE.

2.
WIREs Mech Dis ; 14(1): e1536, 2022 01.
Article in English | MEDLINE | ID: mdl-35023323

ABSTRACT

The lateral hypothalamus is critical for the control of ingestive behavior and spontaneous physical activity (SPA), as lesion or stimulation of this region alters these behaviors. Evidence points to lateral hypothalamic orexin neurons as modulators of feeding and SPA. These neurons affect a broad range of systems, and project to multiple brain regions such as the dorsal raphe nucleus, which contains serotoninergic neurons (DRN) important to energy homeostasis. Physical activity is comprised of intentional exercise and SPA. These are opposite ends of a continuum of physical activity intensity and structure. Non-goal-oriented behaviors, such as fidgeting, standing, and ambulating, constitute SPA in humans, and reflect a propensity for activity separate from intentional activity, such as high-intensity voluntary exercise. In animals, SPA is activity not influenced by rewards such as food or a running wheel. Spontaneous physical activity in humans and animals burns calories and could theoretically be manipulated pharmacologically to expend calories and protect against obesity. The DRN neurons receive orexin inputs, and project heavily onto cortical and subcortical areas involved in movement, feeding and energy expenditure (EE). This review discusses the function of hypothalamic orexin in energy-homeostasis, the interaction with DRN serotonin neurons, and the role of this orexin-serotonin axis in regulating food intake, SPA, and EE. In addition, we discuss possible brain areas involved in orexin-serotonin cross-talk; the role of serotonin receptors, transporters and uptake-inhibitors in the pathogenesis and treatment of obesity; animal models of obesity with impaired serotonin-function; single-nucleotide polymorphisms in the serotonin system and obesity; and future directions in the orexin-serotonin field. This article is categorized under: Metabolic Diseases > Molecular and Cellular Physiology.


Subject(s)
Energy Metabolism , Serotonin , Animals , Humans , Hypothalamic Area, Lateral/metabolism , Hypothalamus/metabolism , Orexins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL