Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Front Chem ; 12: 1378447, 2024.
Article in English | MEDLINE | ID: mdl-38680456

ABSTRACT

Metal ions can perform multiple roles ranging from regulatory to structural and are crucial for cell function. While some metal ions like Na+ are ubiquitously present at high concentrations, other ions, especially Ca2+ and transition metals, such as Zn2+ or Cu+/2+ are regulated. The concentrations above or below the physiological range cause severe changes in the behavior of biomolecules that bind them and subsequently affect the cell wellbeing. This has led to the development of specialized protocols to study metal ion binding biomolecules in bulk conditions that mimic the cell environment. Recently, there is growing evidence of influence of post-transcriptional and post-translational modifications on the affinity of the metal ion binding sites. However, such targets are difficult to obtain in amounts required for classical biophysical experiments. Single molecule techniques have revolutionized the field of biophysics, molecular and structural biology. Their biggest advantage is the ability to observe each molecule's interaction independently, without the need for synchronization. An additional benefit is its extremely low sample consumption. This feature allows characterization of designer biomolecules or targets obtained coming from natural sources. All types of biomolecules, including proteins, DNA and RNA were characterized using single molecule methods. However, one group is underrepresented in those studies. These are the metal ion binding biomolecules. Single molecule experiments often require separate optimization, due to extremely different concentrations used during the experiments. In this review we focus on single molecule methods, such as single molecule FRET, nanopores and optical tweezers that are used to study metal ion binding biomolecules. We summarize various examples of recently characterized targets and reported experimental conditions. Finally, we discuss the potential promises and pitfalls of single molecule characterization on metal ion binding biomolecules.

2.
Metallomics ; 15(6)2023 06 01.
Article in English | MEDLINE | ID: mdl-37147085

ABSTRACT

Mammalian metallothioneins (MTs) are small Cys-rich proteins involved in Zn(II) and Cu(I) homeostasis. They bind seven Zn(II) ions in two distinct ß- and α-domains, forming Zn3Cys9 and Zn4Cys11 clusters, respectively. After six decades of research, their role in cellular buffering of Zn(II) ions has begun to be understood recently. This is because of different affinities of bound ions and the proteins' coexistence in variously Zn(II)-loaded Zn4-7MT species in the cell. To date, it has remained unclear how these mechanisms of action occur and how the affinities are differentiated despite the Zn(S-Cys)4 coordination environment being the same. Here, we dissect the molecular basis of these phenomena by using several MT2 mutants, hybrid protein, and isolated domains. Through a combination of spectroscopic and stability studies, thiol(ate) reactivity, and steered molecular dynamics, we demonstrate that both protein folding and thermodynamics of Zn(II) ion (un)binding significantly differ between isolated domains and the whole protein. Close proximity reduces the degrees of freedom of separated domains, making them less dynamic. It is caused by the formation of intra- and interdomain electrostatic interactions. The energetic consequence of domains connection has a critical impact on the role of MTs in the cellular environment, where they function not only as a zinc sponge but also as a zinc buffering system keeping free Zn(II) in the right concentrations. Any change of that subtle system affects the folding mechanism, zinc site stabilities, and cellular zinc buffer components.


Subject(s)
Metallothionein , Zinc , Animals , Zinc/metabolism , Metallothionein/metabolism , Protein Folding , Molecular Dynamics Simulation , Binding Sites , Mammals/metabolism
3.
Metallomics ; 15(5)2023 05 02.
Article in English | MEDLINE | ID: mdl-37113075

ABSTRACT

Mammalian metallothioneins (MTs) are small cysteine-rich proteins whose primary role is participation in zinc and copper homeostasis. Ever since their discovery, MTs have been investigated in terms of metal-binding affinity. The initial concept of seven Zn(II) ions (Zn7MT) bound with the same, undifferentiated low-picomolar affinity in the α and ß domains prevailed for many years and derived from spectroscopic studies. The application of fluorescent zinc probes has changed the perception of MTs, showing that they function in nanomolar to subnanomolar free zinc concentrations due to the presence of tight, moderate, and weak binding sites. The discovery of Zn(II)-depleted MTs in many tissues and determination of cellular free Zn(II) concentrations with differentiated zinc affinity sites revealed the critical importance of partially saturated Zn4-6MTs species in cellular zinc buffering in a wide picomolar to nanomolar range of free Zn(II) concentrations. Until today, there was no clear agreement on the presence of differentiated or only tight zinc sites. Here, we present a series of spectroscopic, mass spectrometry-based, and enzymatic competition experiments that reveal how weak, moderate, or high-affinity ligands interact with human MT2, with special attention to the determination of Zn(II) affinities. The results show that the simplification of the stability model is the major reason for determining significantly different stability data that obscured the actual MTs function. Therefore, we emphasize that different metal affinities are the single most important reason for their presumed function, which changed over the years from tight binding and, thus, storage to one that is highly dynamic.


Subject(s)
Metals , Zinc , Animals , Humans , Zinc/metabolism , Metals/metabolism , Metallothionein/metabolism , Binding Sites , Mammals/metabolism
4.
Cells ; 10(11)2021 11 10.
Article in English | MEDLINE | ID: mdl-34831341

ABSTRACT

Macroautophagy/autophagy plays an important role in cellular copper clearance. The means by which the copper metabolism and autophagy pathways interact mechanistically is vastly unexplored. Dysfunctional ATP7B, a copper-transporting ATPase, is involved in the development of monogenic Wilson disease, a disorder characterized by disturbed copper transport. Using in silico prediction, we found that ATP7B contains a number of potential binding sites for LC3, a central protein in the autophagy pathway, the so-called LC3 interaction regions (LIRs). The conserved LIR3, located at the C-terminal end of ATP7B, was found to directly interact with LC3B in vitro. Replacing the two conserved hydrophobic residues W1452 and L1455 of LIR3 significantly reduced interaction. Furthermore, autophagy was induced in normal human hepatocellular carcinoma cells (HepG2) leading to enhanced colocalization of ATP7B and LC3B on the autophagosome membranes. By contrast, HepG2 cells deficient of ATP7B (HepG2 ATP7B-/-) showed autophagy deficiency at elevated copper condition. This phenotype was complemented by heterologous ATP7B expression. These findings suggest a cooperative role of ATP7B and LC3B in autophagy-mediated copper clearance.


Subject(s)
Copper-Transporting ATPases/metabolism , Copper/metabolism , Microtubule-Associated Proteins/metabolism , Amino Acid Sequence , Biological Transport/drug effects , Copper/pharmacology , Copper-Transporting ATPases/chemistry , Hep G2 Cells , Humans , Protein Binding/drug effects , Protein Transport/drug effects
5.
Nat Methods ; 18(6): 604-617, 2021 06.
Article in English | MEDLINE | ID: mdl-34099939

ABSTRACT

Single-cell profiling methods have had a profound impact on the understanding of cellular heterogeneity. While genomes and transcriptomes can be explored at the single-cell level, single-cell profiling of proteomes is not yet established. Here we describe new single-molecule protein sequencing and identification technologies alongside innovations in mass spectrometry that will eventually enable broad sequence coverage in single-cell profiling. These technologies will in turn facilitate biological discovery and open new avenues for ultrasensitive disease diagnostics.


Subject(s)
Sequence Analysis, Protein/methods , Single Molecule Imaging/methods , Mass Spectrometry/methods , Nanotechnology , Proteins/chemistry , Proteomics/methods , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods
6.
Metallomics ; 12(8): 1179-1207, 2020 08 19.
Article in English | MEDLINE | ID: mdl-32658234

ABSTRACT

Fluorescent modification of proteins of interest (POI) in living cells is desired to study their behaviour and functions in their natural environment. In a perfect setting it should be easy to perform, inexpensive, efficient and site-selective. Although multiple chemical and biological methods have been developed, only a few of them are applicable for cellular studies thanks to their appropriate physical, chemical and biological characteristics. One such successful system is a tetracysteine tag/motif and its selective biarsenical binders (e.g. FlAsH and ReAsH). Since its discovery in 1998 by Tsien and co-workers, this method has been enhanced and revolutionized in terms of its efficiency, formed complex stability and breadth of application. Here, we overview the whole field of knowledge, while placing most emphasis on recent reports. We showcase the improvements of classical biarsenical probes with various optical properties as well as multifunctional molecules that add new characteristics to proteins. We also present the evolution of affinity tags and motifs of biarsenical probes demonstrating much more possibilities in cellular applications. We summarize protocols and reported observations so both beginners and advanced users of biarsenical probes can troubleshoot their experiments. We address the concerns regarding the safety of biarsenical probe application. We showcase examples in virology, studies on receptors or amyloid aggregation, where application of biarsenical probes allowed observations that previously were not possible. We provide a summary of current applications ranging from bioanalytical sciences to allosteric control of selected proteins. Finally, we present an outlook to encourage more researchers to use these magnificent probes.


Subject(s)
Fluorescent Dyes , Proteins/chemistry , Cysteine/chemistry , Humans
7.
Talanta ; 198: 224-229, 2019 Jun 01.
Article in English | MEDLINE | ID: mdl-30876553

ABSTRACT

We report a facile method for detection of metallothionein (MT), a promising clinically relevant biomarker, in spiked plasma samples. This method, for the first time, integrates molecularly imprinted polymers as purification/pretreatment step with matrix assisted laser desorption/ionization time-of-flight mass spectrometric detection and with laser ablation inductively coupled plasma mass spectrometry for analysis of MTs. The prepared MT-imprinted polydopamine layer showed high binding capacity and specific recognition properties toward the template. Optimal monomer (dopamine) concentration was found to be 16 mM of dopamine. This experimental setup allows to measure µM concentrations of MT that are present in blood as this can be used for clinical studies recognizing MT as marker of various diseases including tumour one. Presented approach not only provides fast sample throughput but also avoids the limitations of methods based on use of antibodies (e.g. high price, cross-reactivity, limited availability in some cases, etc.).


Subject(s)
Indoles/chemistry , Metallothionein/blood , Molecular Imprinting , Polymers/chemistry , Healthy Volunteers , Humans , Mass Spectrometry
8.
Chem Commun (Camb) ; 54(89): 12634-12637, 2018 Nov 06.
Article in English | MEDLINE | ID: mdl-30357199

ABSTRACT

Copper transfer from Cu(ii)amyloid-ß4-16 to human Zn7-metallothionein-3 can be accelerated by glutamate and by lowering the Zn-load of metallothionein-3 with EDTA. Glutamate facilitates the Cu(ii) release, and Zn4-6-metallothionein-3 react more rapidly. These mechanisms are additive, proving the intricate and interconnected network of zinc and copper trafficking between biomolecules.


Subject(s)
Amyloid beta-Peptides/metabolism , Copper/metabolism , Glutamic Acid/metabolism , Nerve Tissue Proteins/metabolism , Neurotransmitter Agents/metabolism , Organometallic Compounds/metabolism , Peptide Fragments/metabolism , Amyloid beta-Peptides/chemistry , Copper/chemistry , Glutamic Acid/chemistry , Humans , Metallothionein 3 , Nerve Tissue Proteins/chemistry , Neurotransmitter Agents/chemistry , Organometallic Compounds/chemistry , Peptide Fragments/chemistry
9.
Bioorg Med Chem ; 26(9): 2610-2620, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29673715

ABSTRACT

Protein tyrosine phosphatases (PTPs), which catalyze the dephosphorylation of phosphotyrosine in protein substrates, are important cell-signaling regulators, as well as potential drug targets for a range of human diseases. Chemical tools for selectively targeting the activities of individual PTPs would help to elucidate PTP signaling roles and potentially expedite the validation of PTPs as therapeutic targets. We have recently reported a novel strategy for the design of non-natural allosteric-inhibition sites in PTPs, in which a tricysteine moiety is engineered within the PTP catalytic domain at a conserved location outside of the active site. Introduction of the tricysteine motif, which does not exist in any wild-type PTP, serves to sensitize target PTPs to inhibition by a biarsenical compound, providing a generalizable strategy for the generation of allosterically sensitized (as) PTPs. Here we show that the potency, selectivity, and kinetics of asPTP inhibition can be significantly improved by exploring the inhibitory action of a range of biarsenical compounds that differ in interarsenical distance, steric bulk, and electronic structure. By investigating the inhibitor sensitivities of five asPTPs from four different subfamilies, we have found that asPTP catalytic domains can be broadly divided into two groups: one that is most potently inhibited by biarsenical compounds with large interarsenical distances, such as AsCy3-EDT2, and one that is most potently inhibited by compounds with relatively small interarsenical distances, such as FlAsH-EDT2. Moreover, we show that a tetrachlorinated derivative of FlAsH-EDT2, Cl4FlAsH-EDT2, targets asPTPs significantly more potently than the parent compound, both in vitro and in asPTP-expressing cells. Our results show that biarsenicals with altered interarsenical distances and electronic properties are important tools for optimizing the control of asPTP activity and, more broadly, suggest that diversification of biarsenical libraries can serve to increase the efficacy of these compounds in targeted control of protein function.


Subject(s)
Arsenicals/pharmacology , Enzyme Inhibitors/pharmacology , Protein Tyrosine Phosphatases, Non-Receptor/antagonists & inhibitors , Allosteric Site/genetics , Amino Acid Sequence , Arsenicals/chemistry , Catalytic Domain/genetics , Enzyme Inhibitors/chemistry , Escherichia coli/metabolism , Kinetics , Molecular Structure , Mutagenesis, Site-Directed , Mutation , Phosphopeptides/chemistry , Phosphopeptides/metabolism , Protein Engineering , Protein Tyrosine Phosphatases, Non-Receptor/genetics , Protein Tyrosine Phosphatases, Non-Receptor/metabolism
10.
Anal Chim Acta ; 1017: 41-47, 2018 Aug 09.
Article in English | MEDLINE | ID: mdl-29534794

ABSTRACT

A capillary electrophoretic (CE) method using a short-sweep approach and laser-induced fluorescence (LIF) detection (ShortSweepCE-LIF) was developed for determination of Zn2+ and Cd2+ as complexes with highly selective and sensitive fluorescent probe FluoZin-3. The ShortSweepCE-LIF method, established in this work, can be used for examining competitive Zn2+ and Cd2+ binding properties of metalloproteins or peptides. The parameters including background electrolyte composition, injection pressure and time as well as separation voltage were investigated. Under the optimized conditions, 80 mM HEPES, pH 7.4, with 1.5 µM FluoZin-3 was used as an electrolyte, hydrodynamic injection was performed at 50 mbar for 5 s, and separation voltage of 25 kV. Limits of detection for Zn2+ and Cd2+ were 4 and 125 nM, respectively. The developed method was demonstrated in a study of interactions between metalothionein-2a isoform and metal ions Zn2+, Co2+ and Cd2+. It was found that FluoZin-3 was able to extract a single Zn2+ ion, while added Co2+ (in surplus) extracted only 2.4 Zn2+ ions, and Cd2+ extracted all 7 Zn2+ ions present in the metalothionein molecule.


Subject(s)
Fluorescent Dyes/chemistry , Metallothionein/analysis , Optical Imaging , Polycyclic Compounds/chemistry , Zinc/analysis , Cadmium/analysis , Electrophoresis, Capillary , Ions/analysis
11.
J Inorg Biochem ; 176: 53-65, 2017 11.
Article in English | MEDLINE | ID: mdl-28863280

ABSTRACT

Zincon (ZI) is one of the most common chromophoric chelating probes for the determination of Zn2+ and Cu2+ ions. It is also known to bind other metal ions. However, literature data on its binding properties and molar absorption coefficients are rather poor, varying among publications or determined only in certain conditions. There are no systematic studies on Zn2+ and Cu2+ affinities towards ZI performed under various conditions. However, this widely commercially available and inexpensive agent is frequently the first choice probe for the measurement of metal binding and release as well as determination of affinity constants of other ligands/macromolecules of interest. Here, we establish the spectral properties and the stability of ZI and its complexes with Zn2+, Cu2+, Cd2+, Hg2+, Co2+, Ni2+ and Pb2+ at multiple pH values from 6 to 9.9. The obtained results show that in water solution the MZI complex is predominant, but in the case of Co2+ and Ni2+, M(ZI)2 complexes are also formed. The molar absorption coefficient at 618 nm for ZnZI and 599nm for CuZI complexes at pH7.4 in buffered (I=0.1M) water solutions are 24,200 and 26,100M-1cm-1, respectively. Dissociation constants of those complexes are 2.09×10-6 and 4.68×10-17M. We also characterized the metal-assisted Zincon decomposition. Our results provide new and reassessed optical and stability data that are applicable to a wide range of chemical and bioinorganic applications including metal ion detection, and quantification and affinity studies of ligands of interest. SYNOPSIS: Accurate values of molar absorption coefficients of Zincon complex with Zn2+, Cd2+, Hg2+, Co2+, Ni2+, Cu2+, and Pb2+ for rapid metal ion quantification are provided. Zincon stability constants with Zn2+ and Cu2+ in a wide pH range were determined.


Subject(s)
Coordination Complexes/chemistry , Formazans/chemistry , Metals/chemistry
12.
FASEB J ; 31(12): 5258-5267, 2017 12.
Article in English | MEDLINE | ID: mdl-28821638

ABSTRACT

Fluorescence-based live-cell imaging (LCI) of lysosomal glycosidases is often hampered by unfavorable pH and redox conditions that reduce fluorescence output. Moreover, most lysosomal glycosidases are low-mass soluble proteins that do not allow for bulky fluorescent protein fusions. We selected α-galactosidase A (GALA) as a model lysosomal glycosidase involved in Anderson-Fabry disease (AFD) for the current LCI approach. Examination of the subcellular localization of AFD-causing mutants can reveal the mechanism underlying cellular trafficking deficits. To minimize genetic GALA modification, we employed a biarsenical labeling protocol with tetracysteine (TC-tag) detection. We tested the efficiency of halogen-substituted biarsenical probes to interact with C-terminally TC-tagged GALA peptide at pH 4.5 in vitro and identified F2FlAsH-EDT2 as a superior detection reagent for GALA. This probe provides improved signal/noise ratio in labeled COS-7 cells transiently expressing TC-tagged GALA. The investigated fluorescence-based LCI technology of TC-tagged lysosomal protein using an improved biarsenical probe can be used to identify novel compounds that promote proper trafficking of mutant GALA to lysosomal compartments and rescue the mutant phenotype.-Bohl, C., Pomorski, A., Seemann, S., Knospe, A.-M., Zheng, C., Krezel, A., Rolfs, A., Lukas, J. Fluorescent probes for selective protein labeling in lysosomes: a case of α-galactosidase A.


Subject(s)
Fluorescent Dyes/chemistry , Lysosomes/metabolism , Molecular Imaging/methods , alpha-Galactosidase/metabolism , Animals , Blotting, Western , COS Cells , Chlorocebus aethiops , Hydrogen-Ion Concentration , Protein Transport
13.
PLoS One ; 11(8): e0161353, 2016.
Article in English | MEDLINE | ID: mdl-27557123

ABSTRACT

Fluorescence measurements of pH and other analytes in the cell rely on accurate calibrations, but these have routinely used algorithms that inadequately describe the properties of indicators. Here, we have established a more accurate method for calibrating and analyzing data obtained using the ratiometric probe 5(6)-carboxy-SNARF-1. We tested the implications of novel approach to measurements of pH in yeast mitochondria, a compartment containing a small number of free H+ ions. Our findings demonstrate that 5(6)-carboxy-SNARF-1 interacts with H+ ions inside the mitochondria in an anticooperative manner (Hill coefficient n of 0.5) and the apparent pH inside the mitochondria is ~0.5 unit lower than had been generally assumed. This result, at odds with the current consensus on the mechanism of energy generation in the mitochondria, is in better agreement with theoretical considerations and warrants further studies of organellar pH.


Subject(s)
Benzopyrans , Hydrogen-Ion Concentration , Mitochondria/metabolism , Naphthols , Protons , Rhodamines , Algorithms , Biosensing Techniques , Fluorescent Dyes , Yeasts/metabolism
14.
J Inorg Biochem ; 152: 82-92, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26364130

ABSTRACT

4-(2-Pyridylazo)resorcinol (PAR) is one of the most popular chromogenic chelator used in the determination of the concentrations of various metal ions from the d, p and f blocks and their affinities for metal ion-binding biomolecules. The most important characteristics of such a sensor are the molar absorption coefficient and the metal-ligand complex dissociation constant. However, it must be remembered that these values are dependent on the specific experimental conditions (e.g. pH, solvent components, and reactant ratios). If one uses these values to process data obtained in different conditions, the final result can be under- or overestimated. We aimed to establish the spectral properties and the stability of PAR and its complexes accurately with Zn(2+), Cd(2+), Hg(2+), Co(2+), Ni(2+), Cu(2+), Mn(2+) and Pb(2+) at a multiple pH values. The obtained results account for the presence of different species of metal-PAR complexes in the physiological pH range of 5 to 8 and have been frequently neglected in previous studies. The effective molar absorption coefficient at 492 nm for the ZnHx(PAR)2 complex at pH7.4 in buffered water solution is 71,500 M(-1) cm(-1), and the dissociation constant of the complex in these conditions is 7.08×10(-13) M(2). To confirm these values and estimate the range of the dissociation constants of zinc-binding biomolecules that can be measured using PAR, we performed several titrations of zinc finger peptides and zinc chelators. Taken together, our results provide the updated parameters that are applicable to any experiment conducted using inexpensive and commercially available PAR.


Subject(s)
Chelating Agents/chemistry , Chromogenic Compounds/chemistry , Metalloproteins/chemistry , Metals/chemistry , Resorcinols/chemistry , Absorption, Physicochemical , Hydrogen-Ion Concentration
15.
Org Biomol Chem ; 13(5): 1395-403, 2015 Feb 07.
Article in English | MEDLINE | ID: mdl-25460004

ABSTRACT

Selective control of enzyme activity is critical for elucidating the roles of specific proteins in signaling pathways. One potential means for developing truly target-specific inhibitors involves the use of protein engineering to sensitize a target enzyme to inhibition by a small molecule that does not inhibit homologous wild-type enzymes. Previously, it has been shown that protein tyrosine phosphatases (PTPs) can be sensitized to inhibition by a biarsenical probe, FlAsH-EDT2, which inhibits PTP activity by specifically binding to cysteine residues that have been introduced into catalytically important regions. In the present study, we developed an array of biarsenical probes, some newly synthesized and some previously reported, to investigate for the first time the structure-activity relationships for PTP inhibition by biarsenicals. Our data show that biarsenical probes which contain substitutions at the 2' and 7' positions are more effective than FlAsH-EDT2 at inhibiting sensitized PTPs. The increased potency of 2',7'-substituted probes was observed when PTPs were assayed with both para-nitrophenylphosphate and phosphopeptide PTP substrates and at multiple probe concentrations. The data further indicate that the enhanced inhibitory properties are the result of increased binding affinity between the 2',7'-substituted biarsenical probes and sensitized PTPs. In addition we provide previously unknown physicochemical and stability data for various biarsenical probes.


Subject(s)
Arsenicals/pharmacology , Enzyme Inhibitors/pharmacology , Protein Tyrosine Phosphatases/antagonists & inhibitors , Protein Tyrosine Phosphatases/metabolism , Allosteric Regulation/drug effects , Amino Acid Sequence , Arsenicals/chemistry , Arsenicals/metabolism , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Models, Molecular , Molecular Probes/chemistry , Molecular Probes/metabolism , Molecular Probes/pharmacology , Molecular Sequence Data , Protein Conformation , Protein Tyrosine Phosphatases/chemistry
16.
Anal Chem ; 85(23): 11479-86, 2013 Dec 03.
Article in English | MEDLINE | ID: mdl-24180305

ABSTRACT

Ratiometric chemical probes and genetically encoded sensors are of high interest for both analytical chemists and molecular biologists. Their high sensitivity toward the target ligand and ability to obtain quantitative results without a known sensor concentration have made them a very useful tool in both in vitro and in vivo assays. Although ratiometric sensors are widely used in many applications, their successful and accurate usage depends on how they are characterized in terms of sensing target molecules. The most important feature of probes and sensors besides their optical parameters is an affinity constant toward analyzed molecules. The literature shows that different analytical approaches are used to determine the stability constants, with the ratio approach being most popular. However, oversimplification and lack of attention to detail results in inaccurate determination of stability constants, which in turn affects the results obtained using these sensors. Here, we present a new method where ratio signal is calibrated for borderline values of intensities of both wavelengths, instead of borderline ratio values that generate errors in many studies. At the same time, the equation takes into account the cooperativity factor or fluorescence artifacts and therefore can be used to characterize systems with various stoichiometries and experimental conditions. Accurate determination of stability constants is demonstrated utilizing four known optical ratiometric probes and sensors, together with a discussion regarding other, currently used methods.


Subject(s)
Biosensing Techniques/methods , Fluorescence Resonance Energy Transfer/methods , Fluorescent Dyes/chemistry , Optical Devices , Amino Acid Sequence , Fluorescent Dyes/metabolism , Molecular Sequence Data , Protein Binding/physiology , Protein Structure, Secondary
17.
Chembiochem ; 12(8): 1152-67, 2011 May 16.
Article in English | MEDLINE | ID: mdl-21538762

ABSTRACT

The fluorescent modification of proteins (with genetically encoded low-molecular-mass fluorophores, affinity probes, or other chemically active species) is extraordinarily useful for monitoring and controlling protein functions in vitro, as well as in cell cultures and tissues. The large sizes of some fluorescent tags, such as fluorescent proteins, often perturb normal activity and localization of the protein of interest, as well as other effects. Of the many fluorescent-labeling strategies applied to in vitro and in vivo studies, one is very promising. This requires a very short (6- to 12-residue), appropriately spaced, tetracysteine sequence (-CCXXCC-); this is either placed at a protein terminus, within flexible loops, or incorporated into secondary structure elements. Proteins that contain the tetracysteine motif become highly fluorescent upon labeling with a nonluminescent biarsenical probe, and form very stable covalent complexes. We focus on the development, growth, and multiple applications of this protein research methodology, both in vitro and in vivo. Its application is not limited to intact-cell protein visualization; it has tremendous potential in other protein research disciplines, such as protein purification and activity control, electron microscopy imaging of cells or tissue, protein-protein interaction studies, protein stability, and aggregation studies.


Subject(s)
Arsenic/chemistry , Fluorescent Dyes/chemistry , Proteins/chemistry , Carbocyanines/chemistry , Fluorescein/chemistry , Molecular Structure , Oxazines/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...