Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
Environ Sci Pollut Res Int ; 31(24): 35779-35788, 2024 May.
Article in English | MEDLINE | ID: mdl-38744760

ABSTRACT

Studies on functional traits of aquatic communities are useful for understanding the ecosystem dynamics as well as the diversity of ecological niches. Here, we characterize zooplankton functional groups and which limnological factors are responsible to changes in traits. Water samples were collected to evaluate limnological parameters and vertical hauls with plankton net (68 µm) were performed to characterize the community in seven reservoirs (Itupararanga, Atibainha, Salto Grande, Rio Grande, Igaratá, Barra Bonita, and Broa, São Paulo state, Brazil). Each species identified was classified according to a trophic group, reproduction mode, body length, habitat, and feeding habitats. Our results showed a predominance of pelagic suspensory herbivores with cilia (31%) followed by pelagic herbivore suspension filter feeders (17%) and raptorial omnivores (15.38%). The other individuals were categorized as pelagic herbivore suspension with oral device (12.3%), littoral herbivores suspensive with cilia (12.3%), pelagic-sucking herbivores (9.2%), and littoral grazing herbivores (3%). The dominance of herbivores may be influenced by the availability of nutrients, influencing their food sources. The abundance of omnivores engaged in predatory behavior can be attributed to disponible prey, thereby exerting significant repercussions on the organization of biological communities.


Subject(s)
Biodiversity , Zooplankton , Brazil , Zooplankton/classification , Animals , Ecosystem , Lakes , Feeding Behavior/physiology
2.
Environ Sci Technol ; 58(10): 4510-4521, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38426442

ABSTRACT

Polystyrene (PS) is one of the main synthetic polymers produced around the world, and it is present in the composition of a wide variety of single-use objects. When released into the environment, these materials are degraded by environmental factors, resulting in microplastics. We investigated the ability of Chironomus sancticaroli (Diptera, Chironomidae) to promote the fragmentation of PS microspheres (24.5 ± 2.9 µm) and the toxic effects associated with exposure to this polymer. C. sancticaroli larvae were exposed to 3 different concentrations of PS (67.5, 135, and 270 particles g-1 of dry sediment) for 144 h. Significant lethality was observed only at the highest concentration. A significant reduction in PS particle size as well as evidence of deterioration on the surface of the spheres, such as grooves and cracks, was observed. In addition, changes in oxidative stress biomarkers (SOD, CAT, MDA, and GST) were also observed. This is the first study to report the ability of Chironomus sp. to promote the biofragmentation of microplastics. The information obtained demonstrates that the macroinvertebrate community can play a key role in the degradation of plastic particles present in the sediment of freshwater environments and can also be threatened by such particle pollution.


Subject(s)
Chironomidae , Water Pollutants, Chemical , Animals , Microplastics/toxicity , Larva , Polystyrenes/toxicity , Chironomidae/metabolism , Plastics/toxicity , Water Pollutants, Chemical/analysis
3.
Environ Sci Pollut Res Int ; 31(15): 22994-23010, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38413525

ABSTRACT

The historical impacts of eutrophication processes were investigated in six subtropical reservoirs (São Paulo, Brazil) using a paleolimnological approach. We questioned whether the levels of pigment indicators of algal biomass could provide information about trophic increase and whether carotenoid pigments could offer additional insights. The following proxies were employed: organic matter, total phosphorus, total nitrogen, photosynthetic pigments (by high-performance liquid chromatography), sedimentation rates, and geochronology (by 210 Pb technique). Principal component analysis indicated a gradient of eutrophication. In eutrophic reservoirs (e.g., Rio Grande and Salto Grande), levels of lutein and zeaxanthin increased over time, suggesting growth of Chlorophyta and Cyanobacteria. These pigments were significantly associated with algal biomass, reflecting their participation in phytoplankton composition. In mesotrophic reservoirs, Broa and Itupararanga, increases and significative linear correlations (r > 0.70) between pigments and nutrients are mainly linked to agricultural and urban activities. In the oligotrophic reservoir Igaratá, lower pigment and nutrient levels reflected lesser human impact and good water quality. This study underscores eutrophication's complexity across subtropical reservoirs. Photosynthetic pigments associated with specific algal groups were informative, especially when correlated with nutrient data. The trophic increase, notably in the 1990s, may have been influenced by neoliberal policies. Integrated pigment and geochemical analysis offers a more precise understanding of eutrophication changes and their ties to human factors. Such research can aid environmental monitoring and sustainable policy development.


Subject(s)
Chlorophyll , Water Quality , Humans , Chlorophyll/analysis , Brazil , Phytoplankton , Environmental Monitoring , Eutrophication , Phosphorus/analysis , Nitrogen/analysis , China
4.
Environ Sci Pollut Res Int ; 30(28): 72430-72445, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37171726

ABSTRACT

All changes taking place in a watershed have repercussions on lacustrine environments, being these, the sink of all activities occurring in the basin. Lake Titicaca, the world's highest and navigable lake, is not unfamiliar with these phenomena that can alter the sedimentation dynamics and metal accumulation. This study aimed to identify temporal trends of sedimentation rates by employing a geochronological analysis (210Pb, 137Cs) and to propose metal background values in Puno Bay, as well as to identify metal concentrations (As, Ba, Ca, Cr, Cu, K, Mg, Mo, Ni, Pb, Zn) in the projected timeline to propose, for the first time, background values in Puno Bay. Two sediment cores were collected from the outer and inner bays. Sediment rate (SR) was calculated through the excess of 210Pb (210Pbxs) applying the Constant Flux Constant Sedimentation (CFCS) model. Results show that SR in the outer bay was 0.48 ± 0.08 cm a-1 and for the inner bay was 0.64 ± 0.07 cm a-1. Sediment quality guidelines (SQGs) did not indicate toxicity was likely to occur, except for As. However, enrichment factors (EFs) indicated that all metal accumulation is geogenic. Climatic factors had a marked influence on sedimentation rates for the outer bay, and in the case of the inner bay, it was a sum of climatic and human-based factors.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Humans , Metals, Heavy/analysis , Geologic Sediments/analysis , Lead/analysis , Environmental Monitoring , Water Pollutants, Chemical/analysis , Bays , China
5.
Aquat Toxicol ; 258: 106516, 2023 May.
Article in English | MEDLINE | ID: mdl-37004465

ABSTRACT

Microplastics are widespread pollutants in the environment and are considered a global pollution problem. Microplastics mostly originate from larger plastics and due to environmental conditions are undergoing constant fragmentation processes. It is important to understand the fragmentation pathways, since they play a key role in the fate of the particles, and also directly influence toxicity. Amphipods are potential inducers of plastic debris fragmentation. Here, Hyalella azteca was exposed to different concentrations (540, 2700, 5400 items/L) of 24.5 µm polystyrene microplastics (PS-MP) for 7 days. After exposure, oxidative stress, particle size reduction, and mortality were checked. No significant mortality was seen in any of the treatments, although changes were recorded in all enzymatic biomarkers analyzed. It was observed that throughout the ingestion and egestion of PS-MP by H. azteca, particles underwent intense fragmentation, presenting a final size up to 25.3% smaller than the initial size. The fragmentation over time (24, 72, 120, 168 h) was verified and the results showed a constant reduction in average particle size indicating that H. azteca are able to induce PS-MP fragmentation. This process may facilitate bioaccumulation and trophic particle transfer.


Subject(s)
Amphipoda , Water Pollutants, Chemical , Animals , Microplastics/metabolism , Plastics/toxicity , Amphipoda/metabolism , Water Pollutants, Chemical/toxicity , Polystyrenes/metabolism
6.
Ecotoxicology ; 32(3): 300-308, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36905483

ABSTRACT

Microplastic (MP) is yet another form of chronic anthropogenic contribution to the environment. MPs are plastic particles (<5 mm) that have been widely found in the most diverse natural environments, but their real impacts on ecosystems are still under investigation. Here, we studied the toxicity of naturally aged secondary polypropylene (PP) MPs after constant exposure to ultraviolet radiation (26 µm) to the third instar larvae of Chironomus sancticaroli, a dipteran species. The concentrations tested were 13.5; 67.5; and 135 items g-1 of dry sediment. C. sancticaroli organisms were investigated for fragment ingestion, mortality and changes in enzymatic biomarkers after 144 h of exposure. The organisms were able to ingest MPs from the first 48 h, and the amount of items internalized was dose-dependent and time-dependent. Overall, the results show that mortality was low, being significant at the lowest and highest concentrations (13.5 and 135 items g-1). Regarding changes in biochemical markers, after 144 h MDA and CAT activities were both significantly altered (increased and reduced, respectively), while SOD and GST levels were unchanged. In the present study, naturally aged polypropylene MPs induced biochemical toxicity in C. sancticaroli larvae, with toxicity being higher according to exposure time and particle concentration.


Subject(s)
Chironomidae , Water Pollutants, Chemical , Animals , Microplastics , Plastics/toxicity , Polypropylenes/toxicity , Chironomidae/physiology , Ecosystem , Ultraviolet Rays , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Larva
7.
Sci Total Environ ; 871: 162051, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36754329

ABSTRACT

Spatial distribution and interpolation methods provide a summarized overview about the pollution dispersion, concerning the environment's quality. A high-altitude lake was taken as a model to assess the metalloid As and metals Cr, Cu, Ni, Pb, Zn distribution in superficial sediment and classify them according to their ecotoxicological potential in the aquatic environment. Surface sediments were collected from 11 sites along Puno Bay located at the western area of Lake Titicaca, Peru, and analyzed for pseudo total-metals. Sediment concentration data and quality were plotted using the Inverse Distance Weighting (IDW) as an interpolation method. High concentrations of As were found especially in the outer bay (81.73 mg.kg-1). Spatial heterogeneity was evidenced for metal by the coefficient of variation, although no significative differences were observed between the two bays applying a Kruskall Wallis test (p < 0.05, df = 1). Sediment quality classification showed that most metal values were below TEL and toxicity was unlikely to occur, only As exceeded threefold PEL values, which categorized sediment as "Very Bad", indicating a rather high ecotoxicological potential to the aquatic environment. In conclusion, spatial analysis connected to interpolation methods demonstrated the superficial sediment heterogeneity in Puno Bay.


Subject(s)
Arsenic , Metals, Heavy , Water Pollutants, Chemical , Arsenic/analysis , Metals, Heavy/analysis , Bays , Lakes/analysis , Peru , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Geologic Sediments/analysis , China
8.
Environ Geochem Health ; 45(5): 2415-2434, 2023 May.
Article in English | MEDLINE | ID: mdl-35986856

ABSTRACT

Spatial distribution linked to geostatistical techniques contributes to sum up information into an easier-to-comprehend knowledge. This study compares copper spatial distribution in surface sediments and subsequent categorization according to its toxicological potential in two reservoirs, Rio Grande (RG) and Itupararanga (ITU) (São Paulo-Brazil), where copper sulfate is applied and not applied, respectively. Sediments from 47 sites in RG and 52 sites in ITU were collected, and then, copper concentrations were interpolated using geostatistical techniques (kriging). The resulting sediment distributions were classified in categories based on sediment quality guides: threshold effect level and probable effect level; regional reference values (RRVs) and enrichment factor (EF). Copper presented a heterogenic distribution and higher concentrations in RG (2283.00 ± 1308.75 mg/kg) especially on the upstream downstream, associated with algicide application as well as the sediment grain size, contrary to ITU (21.81 ± 8.28 mg/kg) where a no-clear pattern of distribution was observed. Sediments in RG are predominantly categorized as "Very Bad", whereas sediments in ITU are mainly categorized as "Good", showing values higher than RRV. The classification is supported by the EF categorization, which in RG is primarily categorized as "Very High" contrasting to ITU classified as "Absent/Very Low". Copper total stock in superficial sediment estimated for RG is 4515.35 Ton of Cu and for ITU is 27.45 Ton of Cu.


Subject(s)
Copper Sulfate , Water Pollutants, Chemical , Copper Sulfate/toxicity , Copper/toxicity , Copper/analysis , Ecotoxicology , Geologic Sediments , Brazil , Environmental Monitoring/methods , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis
9.
Toxics ; 10(4)2022 Apr 07.
Article in English | MEDLINE | ID: mdl-35448443

ABSTRACT

Rivers in the Amazon have among the greatest biodiversity in the world. The Xingu River, one of the tributaries of the Amazon River, has a length of 1640 km, draining 510,000 km2 in one of the most protected regions on the planet. The Middle Xingu region in Brazil has been highly impacted by mining and livestock farming, leading to habitat fragmentation due to altered water quality. Therefore, comparing two rivers (the preserved Xingu River and the impacted Fresco River) and their confluence, the aims of the present study were to (1) assess the land uses in the hydrographic basin; (2) determine the water quality by measurements of turbidity, total solids, and metals (Cd, Cu, Fe, Mn, Pb, Zn, and Hg); (3) compare the zooplankton biodiversity; and (4) to evaluate the avoidance behavior of fish (Astyanax bimaculatus) when exposed to waters from the Xingu and Fresco Rivers. Zooplankton were grouped and counted down to the family level. For the analysis of fish avoidance, a multi-compartment system was used. The forest class predominated at the study locations, accounting for 57.6%, 60.8%, and 63.9% of the total area at P1XR, P2FR, and P3XFR, respectively, although since 1985, at the same points, the forest had been reduced by 31.3%, 25.7%, and 27.9%. The Xingu River presented almost 300% more invertebrate families than the Fresco River, and the fish population preferred its waters (>50%). The inputs from the Fresco River impacted the water quality of the Xingu River, leading to reductions in local invertebrate biodiversity and potential habitats for fish in a typical case of habitat fragmentation due to anthropic factors.

10.
Environ Sci Pollut Res Int ; 29(19): 28495-28509, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34993819

ABSTRACT

Sediment cores were used to establish past environmental impacts associated with eutrophication, erosion and metal contamination in the subtropical Atibainha reservoir (São Paulo State, Brazil). We hypothesize that: (1) the levels of nutrients, determined by a spectrophotometric method, reflect the contributions of these elements over time and (2) changes in sedimentation rates, determined by 210Pb geochronology, and metal flows, determined by ICP-AEOS, are related to anthropic activities. Stratigraphic changes in the analysed variables were used to divide the sediment cores into three intervals, according to PCA and cluster analysis (Euclidian distances, Ward's method). Interval I, composed by the period prior to operation of the reservoir, was influenced by organic matter levels. Interval II, between 1967 and 1993 (PC2: 14.94% of the total variability), a period of minor impacts, was mainly influenced by Mn (eigenvalue of 0.71) and Zn (0.74). Interval III, which included sediment deposited between 1993 and 2015 (PC1: 60.28% of the total variability), was influenced by the highest levels of the pigments lutein (0.86), zeaxanthin (0.90) and fucoxanthin (0.65), together with total nitrogen (0.78) and sedimentation rate (0.91), suggesting changes in the phytoplankton community composition probably associated to the intensification of eutrophication and erosion processes. Despite the limitations of applying paleolimnological techniques in reservoirs and the use of pigments as proxies in regions with higher temperatures, it was observed that the anoxic conditions and the aphotic environment in the hypolimnion acted to preserve pigments associated with the groups Chlorophyta (lutein), Cyanobacteria (zeaxanthin) and Bacillariophyta (fucoxanthin). The isolated analysis of nutrients was not sufficient to make conclusive inferences regarding the eutrophication history, since the levels of TP tended to decrease over time, in contrast to an increase in the levels of TN. Despite intensification of eutrophication and erosion, associated to anthropic activities, no signs of metal contamination were recorded.


Subject(s)
Lutein , Phosphorus , Brazil , Environmental Monitoring , Eutrophication , Geologic Sediments/analysis , Lutein/analysis , Nitrogen/analysis , Phosphorus/analysis , Zeaxanthins/analysis
11.
Biol Trace Elem Res ; 200(2): 800-811, 2022 Feb.
Article in English | MEDLINE | ID: mdl-33840055

ABSTRACT

Mining is one of the main activities that drive the economy of Brazil. Mining activity is associated with risk of contamination of environment and local fauna by metals. Amphibians have a life cycle that requires a transition between aquatic and terrestrial environments, increasing their vulnerability to metal contamination in the water and substrate. Metals are ubiquitous, with high bioaccumulative and biomagnifying potential, and may lead to immune and endocrine disruption. In this study, we analyzed two different components of the innate immune response, bacterial killing ability (BKA) and phytohemagglutinin edema (PHA), and two stress biomarkers, corticosterone plasma levels (CORT) and the neutrophil to lymphocyte ratio (N:L), of toads (Rhinella diptycha) living in places contaminated by metals. Blood samples were collected pre- and post-restraint (1h), followed by an immune challenge with PHA and tissue collection (liver, spleen, and kidneys). Toads liver metal bioaccumulation did not correlate with the immune response or stress biomarkers. Post-restraint, animals had increased CORT and reduced BKA, independently of the collection site, and these variables were not correlated with liver metal bioaccumulation. Interestingly, toads with the larger spleen (immune organ) showed increased N:L post-restraint and greater edema after the PHA challenge. Our results indicate that toads living in metal-contaminated environments responded to acute stressor, activating the hypothalamic-pituitary-interrenal axis and the immune response. Keep tracking the physiological variables of these animals and the presence of metals in the environment and tissues should provide valuable health status indicators for the population, which is vital for proposing amphibian conservation strategies in these areas.


Subject(s)
Bufonidae , Corticosterone , Animals , Lymphocytes , Neutrophils , Restraint, Physical , Stress, Physiological
12.
Environ Sci Pollut Res Int ; 29(13): 18653-18664, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34697712

ABSTRACT

Toxic cyanobacteria blooms are a frequent problem in subtropical reservoirs and freshwater systems. The purpose of this study was to investigate the occurrence of potentially toxic cyanobacteria and the environmental conditions associated with the presence of cyanotoxins in a Brazilian subtropical reservoir. Five collections were carried out at seven sampling locations in the reservoir, during the rainy and dry seasons, between the years 2016 and 2017. There was permanent occurrence of Raphidiopsis raciborskii (Woloszynska) Aguilera, Berrendero Gómez, Kastovsky, Echenique & Salerno (Phycologia 57(2):130-146, 2018), ranging between dominant and abundant, with an average biomass of 38.8 ± 29.9 mg L-1. Also abundant were Dolichospermum solitarium, D. planctonicum, Planktothrix isothrix, and Aphanizomenon gracile. Saxitoxin (STX) was detected in all the collected samples (0.11 ± 0.05 µg L-1). Microcystin (MC) was also detected, but at lower concentrations (0.01 ± 0.0 µg L-1). Low availability of NO3- and phosphorus limitation had significant effects on the R. raciborskii biomass and the levels of STX and MC. It was observed that R. raciborskii was sensitive to thermal stratification, at the same time that STX levels were higher. This suggested that STX was produced under conditions that restricted the growth of R. raciborskii. These are important findings, because they add information about the permanent occurrence of STX and R. raciborskii in an aquatic ecosystem limited by phosphorus, vulnerable to climatic variations, and polluted by domestic effluents.


Subject(s)
Cyanobacteria Toxins , Cylindrospermopsis , Brazil , Ecosystem
14.
Front Microbiol ; 12: 647921, 2021.
Article in English | MEDLINE | ID: mdl-33815337

ABSTRACT

Freshwater reservoirs emit greenhouse gases (GHGs) such as methane (CH4) and carbon dioxide (CO2), contributing to global warming, mainly when impacted by untreated sewage and other anthropogenic sources. These gases can be produced by microbial organic carbon decomposition, but little is known about the microbiota and its participation in GHG production and consumption in these environments. In this paper we analyzed the sediment microbiota of three eutrophic tropical urban freshwater reservoirs, in different seasons and evaluated the correlations between microorganisms and the atmospheric CH4 and CO2 flows, also correlating them to limnological variables. Our results showed that deeper water columns promote high methanogen abundance, with predominance of acetoclastic Methanosaeta spp. and hydrogenotrophs Methanoregula spp. and Methanolinea spp. The aerobic methanotrophic community was affected by dissolved total carbon (DTC) and was dominated by Crenothrix spp. However, both relative abundance of the total methanogenic and aerobic methanotrophic communities in sediments were uncoupled to CH4 and CO2 flows. Network based approach showed that fermentative microbiota, including Leptolinea spp. and Longilinea spp., which produces substrates for methanogenesis, influence CH4 flows and was favored by anthropogenic pollution, such as untreated sewage loads. Additionally, less polluted conditions favored probable anaerobic methanotrophs such as Candidatus Bathyarchaeota, Sva0485, NC10, and MBG-D/DHVEG-1, which promoted lower gaseous flows, confirming the importance of sanitation improvement to reduce these flows in tropical urban freshwater reservoirs and their local and global warming impact.

15.
Environ Sci Pollut Res Int ; 28(31): 42261-42274, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33797721

ABSTRACT

Shallow urban polluted reservoirs at tropical regions can be hotspots for CO2 and CH4 emissions. In this study, we investigated the relationships between eutrophication and GHG emissions in a highly urbanized tropical reservoir in São Paulo Metropolitan Area (Brazil). CO2 and CH4 fluxes and limnological variables (water and sediment) were collected at three sampling stations classified as hypereutrophic and eutrophic. Analysis of variance (ANOVA) and the principal component analysis (PCA) determined the most significant parameters to CO2 and CH4 fluxes. ANOVA showed significant differences of CO2 and CH4 fluxes between sampling stations with different trophic state. The hypereutrophic station showed higher mean fluxes for both CO2 and CH4 (5.43 ± 1.04 and 0.325 ± 0.167 g m-2 d-1, respectively) than the eutrophic stations (3.36 ± 0.54 and 0.060 ± 0.005 g m-2 d-1). The PCA showed a strong relationship between nutrients in the water column (surface and bottom) and GHG fluxes. We concluded that GHG fluxes were higher whenever the trophic state increases as observed previously in temperate and tropical reservoirs. High concentrations of nutrients in the water column in the studied area support the high production of autotrophic biomass that, when sedimented, ends up serving as organic matter for CH4 producers. These outcomes reinforce the necessity of water quality improvement and eutrophication mitigation in highly urbanized reservoirs in tropical regions.


Subject(s)
Carbon Dioxide , Greenhouse Gases , Brazil , Carbon Dioxide/analysis , Eutrophication , Greenhouse Gases/analysis , Methane/analysis
16.
Ecotoxicology ; 30(4): 733-750, 2021 May.
Article in English | MEDLINE | ID: mdl-33821358

ABSTRACT

Atrazine was banned by the European Union in 2004, but is still used in many countries. Agricultural research employing nanotechnology has been developed in order to reduce the impacts to the environment and nontarget organisms. Nanoatrazine was developed as a carrier system and have been considered efficient in weed control. However, its toxicity must be verified with nontarget organisms. In this context, the aim of the present study was to investigate ecotoxicological effects of solid lipid nanoparticles (empty and loaded with atrazine) and atrazine on Chironomus sancticaroli larvae, evaluating the endpoints: mortality, mentum deformity, development rate and biochemical biomarkers. The contaminant concentrations used were 2, 470, 950, and 1900 µg L-1 in acute (96 h) and 2 µg L-1 in subchronic (10 days) bioassays. An environmentally relevant concentration of atrazine (2 µg L-1) presented toxic and lethal effects towards the larvae. The nanoparticles loaded with atrazine showed toxic effects similar to free atrazine, causing mortality and biochemical alterations on the larvae. The nanoparticle without atrazine caused biochemical alterations and mortality, indicating a possible toxic effect of the formulation on the larvae. In the acute bioassay, most concentrations of nanoparticles loaded with atrazine were not dose dependent for the endpoint mortality. Only the atrazine concentration of 470 µg L-1 was statistically significant to endpoint mentum deformity. The atrazine and nanoparticles (with and without atrazine) did not affect larval development. The results indicate that Chironomus sancticaroli was sensitive to monitor nanoatrazine, presenting potential to be used in studies of toxicity of nanopesticides.


Subject(s)
Atrazine , Chironomidae , Herbicides , Water Pollutants, Chemical , Animals , Atrazine/toxicity , Ecotoxicology , Larva , Water Pollutants, Chemical/toxicity , Weed Control
17.
Sci Total Environ ; 781: 146649, 2021 Aug 10.
Article in English | MEDLINE | ID: mdl-33794454

ABSTRACT

It has been postulated that eutrophication causes replacement of n3 highly unsaturated fatty acids (n3 HUFA) rich taxa, such as Bacillariophyta, Cryptophyta and Dinophyta, with taxa poor in these fatty acids (FA), such as Chlorophyta and Cyanobacteria. Such a change in community composition at the basis of the food web may alter the FA composition of consumer tissues. Here, we investigated the effects of eutrophication on phytoplankton composition and FA profiles of seston and muscle of two omnivorous fish species (Astyanax fasciatus and Astyanax altiparanae) from reservoirs of different trophic status in Southeast Brazil. The phytoplankton composition and seston FA profiles reflected the degree of eutrophication at most of the studied sites. Three of the five most eutrophic sites were dominated by cyanobacteria and had the highest saturated fatty acid (SFA) and lowest polyunsaturated fatty acid (PUFA) relative contents among all sites. In contrast, the remaining two sites presented a higher phytoplankton diversity and higher relative contribution of sestonic PUFAs with 18 carbons (C18) and HUFAs than less eutrophic systems. However, there were no clear effects of sestonic FA profiles on the FA profiles of muscle of both fish species. A higher percentage of n3 HUFAs was found in the fish samples from a hypereutrophic and cyanobacteria dominated reservoir than in those from sites with a more diverse phytoplankton community in which fish mainly showed higher percentages of C18 PUFA. These results suggest a lack of a direct relationship between the degree of eutrophication and the percentage of n3 HUFAs in both fish species, which can be caused by specific characteristics of the reservoirs that may modulate eutrophication effects. Therefore, consumer FA biochemistry seemed to be dictated by their ability to select, accumulate, and modify dietary FAs, rather than by the eutrophication degree of the studied tropical reservoirs.


Subject(s)
Diatoms , Fatty Acids , Animals , Brazil , Eutrophication , Phytoplankton
18.
Ecotoxicology ; 30(4): 599-609, 2021 May.
Article in English | MEDLINE | ID: mdl-33730295

ABSTRACT

Every day, tons of caffeine is consumed by humans in beverages, medications or supplements, and a significant amount of this stimulant is released in domestic sewage. Once in aquatic environments caffeine interacts directly with the periphytic community, which is responsible for a significant part of primary production in aquatic ecosystems. However, the effects of exposure to caffeine are mostly unknown for both the periphyton and their predators. Aiming to comprehend the interaction between caffeine and the periphytic community, ecotoxicological experiments were performed by exposing a periphytic biofilm cultivated in the laboratory to different concentrations of caffeine, following concentrations found in domestic sewers. The impact of exposure to this contaminant was observed on the structure of the community through taxonomic evaluation, as well a set of physiological variables linked to primary production. After exposure to the highest caffeine concentration (300 µg L-1), the density of the genus Scenedesmus was severely affected, leading to an increase in cyanobacteria and diatoms. Both richness and diversity decreased after exposure, and there was lower photosynthetic activity, with light saturation point changing from 186 µmol m-2 s-1 in the control treatment to 108 µmol m-2 s-1 after exposure. Caffeine accumulation within the biofilm was also observed during the first 24 h, in the concentration of 0.14 µg /cm².


Subject(s)
Cyanobacteria , Periphyton , Water Pollutants, Chemical , Caffeine/toxicity , Ecosystem , Humans , Photosynthesis , Water Pollutants, Chemical/toxicity
19.
Environ Sci Pollut Res Int ; 28(26): 34990-35011, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33661492

ABSTRACT

Satellite images were used to assess surface water quality based on the concentration of chlorophyll a (chla), light penetration measured by the Secchi disk method (SD), and the Cyanobacteria cells number per mL (cyano). For this case study, six reservoirs interconnected were evaluated, comprising the Cantareira System (CS) in São Paulo State (Brazil). The work employed Sentinel-2 images from 2015 to 2018, SNAP image processing software, and the native products conc_chl and kd_z90max, treated using Case 2 Regional Coast Color (C2RCC) atmospheric correction. The database was obtained from CETESB, the agency legally responsible for operation of the Inland Water Quality Monitoring Network in São Paulo State. The results demonstrated robustness in the estimates of chla (RMSE = 3.73; NRMSE% = 19%) and SD (RMSE = 2,26; NRMSE% = 14%). Due to the strong relationship between cyano and chla (r2 = 0.84, p < 0.01, n = 90), both obtained from field measurements, there was also robustness in cyano estimates based on the estimates of chla from the satellite images. The data revealed a clear pattern, with the upstream reservoirs being more eutrophic, compared to those downstream. There were evident concerns, about water quality, particularly due to the high numbers of Cyanobacteria cells, especially in the upstream reservoirs.


Subject(s)
Cyanobacteria , Water Quality , Brazil , Cell Count , Chlorophyll/analysis , Chlorophyll A , Environmental Monitoring
20.
Environ Sci Pollut Res Int ; 28(13): 16029-16041, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33245536

ABSTRACT

The establishment of reference conditions and typology are two important steps in water resources management. The reference conditions enable the determination of how impacted an ecosystem is, while the typology facilitates the implementation of management procedures. A study of subtropical reservoirs in São Paulo State (Brazil) was performed to obtain (1) an abiotic typology, using principal component analysis (PCA) and cluster analysis (Ward's method with Euclidean distances), and (2) reference conditions for total phosphorus (TP), total nitrogen (TN), and chlorophyll-a (Chl-a) in the dry and rainy seasons for one of the established typologies. Two main statistical techniques were used: the lake population distribution approach and the trisection method. PCA identified an environmental gradient in the east-west direction, with reservoirs at higher latitudes and with larger dimensions in the west, and smaller reservoirs in eastern areas with higher altitude and higher average annual rainfall. The PCA and cluster analysis indicated that there were four main types of reservoirs. The nutrient criteria techniques, obtained for 13 type I rainy-east reservoirs, were not significantly different (t test, p < 0.05). Although the methods resulted in similar reference conditions, one-way ANOVA indicated significant differences between the seasons for Chl-a, which levels were slightly higher in the rainy season. As far as we know, this is the first study to simultaneously provide an abiotic typology and reference conditions for chlorophyll-a and nutrients in different seasons, considering subtropical reservoirs in South America. This investigation makes an important contribution to the monitoring and management of subtropical reservoirs, and the promotion of dialog between the scientific community and managers, aiming at ensuring the sustainability of water bodies.


Subject(s)
Ecosystem , Eutrophication , Brazil , China , Chlorophyll/analysis , Chlorophyll A , Environmental Monitoring , Lakes , Nitrogen/analysis , Nutrients , Phosphorus/analysis , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...