Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Med Biol ; 58(22): 8121-33, 2013 Nov 21.
Article in English | MEDLINE | ID: mdl-24200743

ABSTRACT

High-energy electron beams generated by linear accelerators, typically in the range 6 to 20 MeV, are used in small field sizes for radiotherapy of localized superficial tumors. Unshielded silicon diodes (Si-D) are commonly considered suitable detectors for relative dose measurements in small electron fields due to their high spatial resolution. Recently, a novel synthetic single crystal diamond diode (SCDD) showed suitable properties for standard electron beams and small photon beams dosimetry. The aim of the present study is twofold: to characterize 6 to 15 MeV small electron beams shaped by using commercial tubular applicators with 2, 3, 4 and 5 cm diameter and to assess the dosimetric performance under such irradiation conditions of the novel SCDD dosimeter by comparison with commercially available dosimeters, namely a Si-D and a plane­parallel ionization chamber. Percentage depth dose curves, beam profiles and output factors (OFs) were measured. A good agreement among the dosimeters was observed in all of the performed measurements. As for the tubular applicators, two main effects were evidenced: (i) OFs larger than unity were measured for a number of field sizes and energies, with values up to about 1.3, that is an output 30% greater than that obtained at the 10 × 10 cm2 reference field; (ii) for each diameter of the tubular applicator a noticeable increase of the OF values was observed with increasing beam energy, up to about 100% in the case of the smaller applicator. This OF behavior is remarkably different from what typically observed for small blocked fields having the same size and energy as those used in this study. OFs for tubular applicators depend considerably on the field size, so interpolation is unadvisable to predict the linear accelerator output for such applicators whereas reliable high-resolution detectors, as the silicon and diamond diodes used in this work allow OF measurements with uncertainties of about 1%.


Subject(s)
Diamond , Electrons/therapeutic use , Particle Accelerators/instrumentation , Radiotherapy/instrumentation , Silicon
2.
Phys Rev Lett ; 94(21): 212303, 2005 Jun 03.
Article in English | MEDLINE | ID: mdl-16090313

ABSTRACT

We have searched for a deeply bound kaonic state by using the FINUDA spectrometer installed at the e(+)e(-) collider DAPhiNE. Almost monochromatic K(-)'s produced through the decay of phi(1020) mesons are used to observe K(-) absorption reactions stopped on very thin nuclear targets. Taking this unique advantage, we have succeeded to detect a kaon-bound state K(-)pp through its two-body decay into a Lambda hyperon and a proton. The binding energy and the decay width are determined from the invariant-mass distribution as 115(+6)(-5)(stat)(+3)(-4)(syst) MeV and 67(+14)(-11)(stat)(+2)(-3)(syst) MeV, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...