Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Neurosci ; 17: 1131313, 2023.
Article in English | MEDLINE | ID: mdl-37426551

ABSTRACT

Introduction: Dopamine release in the forebrain by midbrain ventral tegmental nucleus (VTA) and substantia nigra pars compacta (SNc) neurons is implicated in reward processing, goal-directed learning, and decision-making. Rhythmic oscillations of neural excitability underlie coordination of network processing, and have been reported in these dopaminergic nuclei at several frequency bands. This paper provides a comparative characterization of several frequencies of oscillations of local field potential and single unit activity, highlighting some behavioral correlates. Methods: We recorded from optogenetically identified dopaminergic sites in four mice training in operant olfactory and visual discrimination tasks. Results: Rayleigh and Pairwise Phase Consistency (PPC) analyses revealed some VTA/SNc neurons phase-locked to each frequency range, with fast spiking interneurons (FSIs) prevalent at 1-2.5 Hz (slow) and 4 Hz bands, and dopaminergic neurons predominant in the theta band. More FSIs than dopaminergic neurons were phase-locked in the slow and 4 Hz bands during many task events. The highest incidence of phase-locking in neurons was in the slow and 4 Hz bands, and occurred during the delay between the operant choice and trial outcome (reward or punishment) signals. Discussion: These data provide a basis for further examination of rhythmic coordination of activity of dopaminergic nuclei with other brain structures, and its impact for adaptive behavior.

2.
J Neural Eng ; 20(4)2023 07 07.
Article in English | MEDLINE | ID: mdl-37369197

ABSTRACT

Neuropixels probes have become a crucial tool for high-density electrophysiological recordings. Although most research involving these probes is in acute preparations, some scientific inquiries require long-term recordings in freely moving animals. Recent reports have presented prosthesis designs for chronic recordings, but some of them do not allow for probe recovery, which is desirable given their cost. Others appear to be fragile, as these articles describe numerous broken implants.Objective.This fragility presents a challenge for recordings in rats, particularly in epilepsy models where strong mechanical stress impinges upon the prosthesis. To overcome these limitations, we sought to develop a new prosthesis for long-term electrophysiological recordings in healthy and epileptic rats.Approach.We present a new prosthesis specifically designed to protect the probes from strong shocks and enable the safe retrieval of probes after experiments.Main results.This prosthesis was successfully used to record from healthy and epileptic rats for up to three weeks almost continuously. Overall, 10 out of 11 probes could be successfully retrieved with a retrieval and reuse success rate of 91%.Significance.Our design and protocol significantly improved previously described probe recycling performances and prove usage on epileptic rats.


Subject(s)
Artificial Limbs , Epilepsy , Rats , Animals , Electrodes, Implanted , Electrophysiological Phenomena , Polymers
3.
Curr Biol ; 32(14): 3180-3188.e4, 2022 07 25.
Article in English | MEDLINE | ID: mdl-35705096

ABSTRACT

Current treatments for trauma-related disorders remain ineffective for many patients.1,2 Fear extinction deficiency is a prominent feature of these diseases,3 and many behavioral treatments rely on extinction training.4,5 However, in many patients, therapy is followed by a relapse of symptoms, and the underpinnings of such interindividual variations in vulnerability to relapse remain unknown.6-8 Here, we modeled interindividual differences in post-therapy fear relapse with an ethologically relevant trauma recovery paradigm. After fear conditioning, male rats underwent fear extinction while foraging in a large enriched arena, permitting the expression of a wide spectrum of behaviors. An automated multidimensional behavioral assessment revealed that post-conditioning fear response profiles clustered into two groups: some animals expressed fear by freezing more, whereas others darted more, as if fleeing from danger. Remarkably, the tendency of an animal to dart or to freeze after CS presentation during the first extinction session was, respectively, associated with stronger or weaker fear renewal. Moreover, genome-wide transcriptional profiling revealed that these groups differentially regulated specific sets of genes, some of which were previously implicated in anxiety and trauma-related disorders. Our results suggest that post-trauma behavioral phenotypes and the associated gene expression landscapes can serve as markers of fear relapse susceptibility and thus may be instrumental for future development of more effective treatments for psychiatric patients.


Subject(s)
Extinction, Psychological , Fear , Animals , Conditioning, Classical/physiology , Extinction, Psychological/physiology , Fear/physiology , Male , Phenotype , Rats , Recurrence
4.
Front Neural Circuits ; 16: 783768, 2022.
Article in English | MEDLINE | ID: mdl-35399613

ABSTRACT

In-vivo longitudinal recordings require reliable means to automatically discriminate between distinct behavioral states, in particular between awake and sleep epochs. The typical approach is to use some measure of motor activity together with extracellular electrophysiological signals, namely the relative contribution of theta and delta frequency bands to the Local Field Potential (LFP). However, these bands can partially overlap with oscillations characterizing other behaviors such as the 4 Hz accompanying rodent freezing. Here, we first demonstrate how standard methods fail to discriminate between sleep and freezing in protocols where both behaviors are observed. Then, as an alternative, we propose to use the smoothed cortical spindle power to detect sleep epochs. Finally, we show the effectiveness of this method in discriminating between sleep and freezing in our recordings.


Subject(s)
Sleep , Wakefulness , Electroencephalography/methods , Electrophysiological Phenomena , Sleep/physiology
5.
Sci Rep ; 6: 35689, 2016 10 21.
Article in English | MEDLINE | ID: mdl-27767085

ABSTRACT

While miniature inertial sensors offer a promising means for precisely detecting, quantifying and classifying animal behaviors, versatile inertial sensing devices adapted for small, freely-moving laboratory animals are still lacking. We developed a standalone and cost-effective platform for performing high-rate wireless inertial measurements of head movements in rats. Our system is designed to enable real-time bidirectional communication between the headborne inertial sensing device and third party systems, which can be used for precise data timestamping and low-latency motion-triggered applications. We illustrate the usefulness of our system in diverse experimental situations. We show that our system can be used for precisely quantifying motor responses evoked by external stimuli, for characterizing head kinematics during normal behavior and for monitoring head posture under normal and pathological conditions obtained using unilateral vestibular lesions. We also introduce and validate a novel method for automatically quantifying behavioral freezing during Pavlovian fear conditioning experiments, which offers superior performance in terms of precision, temporal resolution and efficiency. Thus, this system precisely acquires movement information in freely-moving animals, and can enable objective and quantitative behavioral scoring methods in a wide variety of experimental situations.


Subject(s)
Head Movements/physiology , Wireless Technology/instrumentation , Accelerometry/instrumentation , Animals , Behavior, Animal/physiology , Biomechanical Phenomena , Conditioning, Psychological/physiology , Equipment Design , Fear/physiology , Male , Rats , Rats, Long-Evans , Vestibule, Labyrinth/injuries , Vestibule, Labyrinth/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...