Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
FASEB J ; 21(4): 1256-63, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17215484

ABSTRACT

c-Myc is a transcription modulator proto-oncogene. When overexpressed, it becomes an important contributor to the multi-hit process of malignant transformation. In two earlier papers in this journal (see refs. 19 , 20) we reported that retro-inverso peptidomimetic molecules inspired by the Helix-1 of c-Myc motif could be sequence-specific antiproliferative agents active in the low micromolar range. We also found that our peptides were not opening the four-alpha-helix Myc:Max bundle. Their antiproliferative activity in cancer cell lines needs the presence of side chains projecting outside of the bundle in the corresponding native H1 motif. This observation suggested interference with an external partner. In this study we investigated the INI1:Myc interaction. INI1 is a subunit of the SWI/SNF complex (component of the enhanceosome surrounding Myc:Max heterodimer). The INI1:Myc interaction was confirmed via pull down, ELISA, and fluorescence anisotropy assays. According to the length of INI1 fragments used, we calculated Kds ranging between 1.3x10(-6) and 4.8x10(-7) M. The three different techniques applied showed that the INI1:Myc interaction was also the target of our retro-inverso peptidomimetic molecules, which seem to bind specifically at INI1. A Myc binding, 21aa INI1 fragment (minimum interacting sequence), could inspire the synthesis of a new class of more selective c-Myc inhibitors.


Subject(s)
Antineoplastic Agents/pharmacology , Chromosomal Proteins, Non-Histone/chemistry , DNA-Binding Proteins/chemistry , Neoplasms/metabolism , Peptides/chemistry , Protein Interaction Mapping , Proto-Oncogene Proteins c-myc/chemistry , Transcription Factors/chemistry , Amino Acid Sequence , Anisotropy , Biochemistry/methods , Humans , Kinetics , Microscopy, Fluorescence , Molecular Sequence Data , Neoplasms/drug therapy , Protein Conformation , Protein Structure, Secondary , Proto-Oncogene Mas , SMARCB1 Protein
2.
FASEB J ; 19(6): 632-4, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15671156

ABSTRACT

Our work is focused in the broad area of strategies and efforts to inhibit protein-protein interactions. The possible strategies in this field are definitely much more varied than in the case of ATP-pocket inhibitors. In our previous work (10), we reported that a retro-inverso (RI) form of Helix1 (H1) of c-Myc, linked to an RI-internalization sequence arising from the third alpha-helix of Antennapedia (Int) was endowed with an antiproliferative and proapoptotic activity toward the cancer cell lines MCF-7 and HCT-116. The activity apparently was dependent upon the presence of the Myc motif. In this work, by ala-scan mapping of the H1 portion of our molecules with D-aa, we found two amino acids necessary for antiproliferative activity: D-Lys in 4 and D-Arg in 5 (numbers refer to L-forms). In the natural hetero-dimer, these two side chains project to the outside of the four alpha-helix bundle. Moreover, we were able to obtain three peptides more active than the original lead. They strongly reduced cell proliferation and survival (RI-Int-VV-H1-E2A,S6A,F8A; RI-Int-VV-H1-S6A,F8A,R11A; RI-Int-VV-H1-S6A,F8A,Q13A): after 8 days at 10 muM total cell number was approximately 1% of the number of cells initially seeded. In these more potent molecules, the ablated side chains project to the inside in the corresponding natural four alpha-helix bundle. In the present work, we also investigated the behavior of our molecules at the biochemical level. Using both a circular dichroism (CD) and a fluorescence anisotropy approach, we noted that side chains projecting at the interior of the four alpha-helix bundle are needed for inducing the partial unfolding of Myc-H2, without an opening of the leucine zipper. Side chains projecting at the outside are not required for this biochemical effect. However, antiproliferative activity had the opposite requirements: side chains projecting at the outside of the bundle were essential, and, on the contrary, ablation of one side chain at a time projecting at the inside increased rather than decreased biological activity. We conclude that our active molecules probably interfere at the level of a protein-protein interaction between Myc-Max and a third protein of the transcription complex. Finally, CD and nuclear magnetic resonance (NMR) data, plus dynamic simulations, suggest a prevalent random coil conformation of the H1 portion of our molecules, at least in diluted solutions. The introduction of a kink (substitution with proline in positions 5 or 7) led to an important reduction of biological activity. We have also synthesized a longer peptido-mimetic molecule (RI-Int-H1-S6A,F8A-loop-H2) with the intent of obtaining a wider zone of interaction and a stronger interference at the level of the higher-order structure (enhanceosome). RI-Int-H1-S6A,F8A-loop-H2 was less active rather than more active in respect to RI-Int-VV-H1-S6A,F8A, apparently because it has a clear bent to form a beta-sheet (CD and NMR data).


Subject(s)
Peptides/pharmacology , Protein Structure, Secondary , Proto-Oncogene Proteins c-myc/chemistry , Amino Acid Sequence , Apoptosis , Basic-Leucine Zipper Transcription Factors/chemistry , Breast Neoplasms , Cell Division/drug effects , Cell Line, Tumor , Circular Dichroism , Colonic Neoplasms , Dimerization , Drug Stability , Fluorescein , Fluorescence Polarization , Fluorescent Dyes , Hot Temperature , Humans , Magnetic Resonance Spectroscopy , Molecular Sequence Data , Peptides/chemical synthesis , Peptides/chemistry , Protein Denaturation , Proto-Oncogene Proteins c-myc/analysis , Rhodamines/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...