Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Med ; 27(4): 677-687, 2021 04.
Article in English | MEDLINE | ID: mdl-33737751

ABSTRACT

ß-Thalassemia pathology is due not only to loss of ß-globin (HBB), but also to erythrotoxic accumulation and aggregation of the ß-globin-binding partner, α-globin (HBA1/2). Here we describe a Cas9/AAV6-mediated genome editing strategy that can replace the entire HBA1 gene with a full-length HBB transgene in ß-thalassemia-derived hematopoietic stem and progenitor cells (HSPCs), which is sufficient to normalize ß-globin:α-globin messenger RNA and protein ratios and restore functional adult hemoglobin tetramers in patient-derived red blood cells. Edited HSPCs were capable of long-term and bilineage hematopoietic reconstitution in mice, establishing proof of concept for replacement of HBA1 with HBB as a novel therapeutic strategy for curing ß-thalassemia.


Subject(s)
Genetic Therapy , Hematopoietic Stem Cells/metabolism , Hemoglobins/metabolism , alpha-Globins/genetics , beta-Globins/genetics , beta-Thalassemia/genetics , beta-Thalassemia/therapy , Anemia, Sickle Cell/pathology , Animals , Antigens, CD34/metabolism , Dependovirus/genetics , Erythrocytes/metabolism , Gene Editing , Genes, Reporter , Genetic Loci , Hematopoietic Stem Cell Transplantation , Humans , Mice , Promoter Regions, Genetic/genetics , RNA, Guide, Kinetoplastida/genetics
2.
Nat Commun ; 11(1): 2713, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32483127

ABSTRACT

Despite their rapidly-expanding therapeutic potential, human pluripotent stem cell (hPSC)-derived cell therapies continue to have serious safety risks. Transplantation of hPSC-derived cell populations into preclinical models has generated teratomas (tumors arising from undifferentiated hPSCs), unwanted tissues, and other types of adverse events. Mitigating these risks is important to increase the safety of such therapies. Here we use genome editing to engineer a general platform to improve the safety of future hPSC-derived cell transplantation therapies. Specifically, we develop hPSC lines bearing two drug-inducible safeguards, which have distinct functionalities and address separate safety concerns. In vitro administration of one small molecule depletes undifferentiated hPSCs >106-fold, thus preventing teratoma formation in vivo. Administration of a second small molecule kills all hPSC-derived cell-types, thus providing an option to eliminate the entire hPSC-derived cell product in vivo if adverse events arise. These orthogonal safety switches address major safety concerns with pluripotent cell-derived therapies.


Subject(s)
Cell Culture Techniques/methods , Cell Differentiation/genetics , Gene Editing/methods , Pluripotent Stem Cells/metabolism , Stem Cell Transplantation/methods , Animals , Cell Survival/drug effects , Cell Survival/genetics , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Nanog Homeobox Protein/genetics , Nanog Homeobox Protein/metabolism , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/drug effects , Small Molecule Libraries/pharmacology , Tacrolimus/analogs & derivatives , Tacrolimus/pharmacology , Teratoma/genetics , Teratoma/metabolism , Teratoma/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL
...